Avaliação da influência do tempo de congelamento no potencial antioxidante e teor de cianidina-3-glicosídeo em frutos de amora-preta / Evaluation of freezing storage in the antioxidant capacity and content of cyanidin-3-glucoside in blackberry fruits

Josué Guilherme Lisbôa Moura, Patricia Soeiro Petroski, Deise Lucas de Lima, Vanessa Mossmann, Patrícia Weimer, Juliana de Castilhos, Valmor Ziegler, Rochele Cassanta Rossi

Abstract


A amora-preta ganha destaque pela alta concentração de antocianidinas, que estão relacionadas com as suas propriedades antioxidantes. Porém, essa baga têm uma estrutura frágil e alta atividade respiratória, o que torna sua vida pós-colheita muito curta, sendo encontrada para consumo in natura apenas em um período curto no ano. Este estudo objetivou avaliar a influência do tempo de congelamento no teor dos compostos bioativos dos frutos de amora-preta. Para tal, comparou-se o teor de compostos fenólicos, o potencial antioxidante in vitro e o teor de cianidina-3-glicosídeo do suco de amora-preta in natura e após 5, 10, 15, 20 e 30 dias de congelamento a -20 ºC. Para a avaliação do teor de compostos fenólicos totais utilizou-se a técnica de Folin Ciocalteau, a capacidade antioxidante foi determinada pelo método de captura de radical ABTS e a quantificação de cianidina-3-glicosídeo foi realizada utilizando CLAE-UV. O teor de compostos fenólicos no suco in natura da amora e da fruta congelada caiu de 839,9 ± 4,3 µg EAG/mL no tempo zero, para 706,2 ± 2,8 µg EAG/mL no 15º dia. A capacidade antioxidante foi de 7911,946 ± 0,932 µmol ET/mL para o suco in natura, com redução de 85,37 ± 1,38% após 30 dias de congelamento. Na quantificação de cianidina-3–glicosídeo o teor inicial obtido foi de 228,0 ± 1,54 µg/mL para o suco da amora in natura com perda < 6% durante os 30 dias de congelamento. Portanto, o suco de amora-preta in natura possui maior teor de compostos fenólicos e antioxidantes do que a amora-preta congelada. 


Keywords


Amora-preta; Congelamento; Antioxidante; Compostos Fenólicos; Cianidina-3-glicosídeo.

References


ANTUNES, Luís Eduardo Corrêa et al. Produção de amoreira-preta no Brasil. Revista Brasileira de Fruticultura, [s.l.], v. 36, n. 1, p.100-111, mar. 2014. FapUNIFESP (SciELO). http://dx.doi.org/10.1590/0100-2945-450/13.

ARAÚJO, Paula Ferreira de et al. INFLUÊNCIA DO CONGELAMENTO SOBRE AS CARACTERÍSTICAS FÍSICO-QUÍMICAS E O POTENCIAL ANTIOXIDANTE DE NÉCTAR DE AMORA-PRETA*. Boletim do Centro de Pesquisa de Processamento de Alimentos, [s.l.], v. 27, n. 2, p.199-206, 31 dez. 2009. Universidade Federal do Parana. http://dx.doi.org/10.5380/cep.v27i2.22029.

CELANT, Viviane Marcela et al. PHENOLIC COMPOSITION AND ANTIOXIDANT CAPACITY OF AQUEOUS AND ETHANOLIC EXTRACTS OF BLACKBERRIES. Revista Brasileira de Fruticultura, [s.l.], v. 38, n. 2, e411, 2016. FapUNIFESP (SciELO). http://dx.doi.org/10.1590/0100-29452016411.

CHEN, Pei-ni et al. Cyanidin 3-Glucoside and Peonidin 3-Glucoside Inhibit Tumor Cell Growth and Induce Apoptosis In Vitro and Suppress Tumor Growth In Vivo. Nutrition And Cancer, [s.l.], v. 53, n. 2, p.232-243, nov. 2005. Informa UK Limited. http://dx.doi.org/10.1207/s15327914nc5302_12.

CORY, Hannah et al. The Role of Polyphenols in Human Health and Food Systems: A Mini-Review. Frontiers In Nutrition, [s.l.], v. 5, p.1-9, 21 set. 2018. Frontiers Media SA. http://dx.doi.org/10.3389/fnut.2018.00087.

CROGE, Camila P. et al. Antioxidant Capacity and Polyphenolic Compounds of Blackberries Produced in Different Climates. Hortscience, [s.l.], v. 54, n. 12, p.2209-2213, dez. 2019. American Society for Horticultural Science. http://dx.doi.org/10.21273/hortsci14377-19.

DEWANTO, Veronica et al. Thermal Processing Enhances the Nutritional Value of Tomatoes by Increasing Total Antioxidant Activity. Journal Of Agricultural And Food Chemistry, [s.l.], v. 50, n. 10, p.3010-3014, maio 2002. American Chemical Society (ACS). http://dx.doi.org/10.1021/jf0115589.

DING, Min et al. Cyanidin-3-glucoside, a Natural Product Derived from Blackberry, Exhibits Chemopreventive and Chemotherapeutic Activity. Journal Of Biological Chemistry, [s.l.], v. 281, n. 25, p.17359-17368, 17 abr. 2006. American Society for Biochemistry & Molecular Biology (ASBMB). http://dx.doi.org/10.1074/jbc.m600861200.

FERREIRA, Daniela Souza; ROSSO, Veridiana Vera de; MERCADANTE, Adriana Zerlotti. Compostos bioativos presentes em amora-preta (Rubus spp.). Revista Brasileira de Fruticultura, [s.l.], v. 32, n. 3, p.664-674, 8 out. 2010. FapUNIFESP (SciELO). http://dx.doi.org/10.1590/s0100-29452010005000110.

GOMES, Wesley Faria et al. Effect of freeze- and spray-drying on physico-chemical characteristics, phenolic compounds and antioxidant activity of papaya pulp. Journal Of Food Science And Technology, [s.l.], v. 55, n. 6, p.2095-2102, 19 mar. 2018. Springer Science and Business Media LLC. http://dx.doi.org/10.1007/s13197-018-3124-z.

GONÇALVES, Natália Bonissi; PORTARI, Guilherme Vannuchi; JORDÃO, Alceu Afonso. Quantificação de compostos antioxidantes em frutos in natura e polpa congelada. Journal Health Science Institute, v. 37, n. 1, p. 73-6, 2019.

GOWD, Vemana; BAO, Tao; CHEN, Wei. Antioxidant potential and phenolic profile of blackberry anthocyanin extract followed by human gut microbiota fermentation. Food Research International, [s.l.], v. 120, p.523-533, jun. 2019. Elsevier BV. http://dx.doi.org/10.1016/j.foodres.2018.11.001.

HAIDA, Kimiyo S. et al. Phenolic Compounds and Antioxidant Activity of Guava (Psidium guajavaL.) Fresh and Frozen. Revista Fitos, [s.l.], v. 9, n. 1, p.37-44, 2015. Fiocruz - Instituto de Tecnologia em Farmacos. http://dx.doi.org/10.5935/2446-4775.20150004.

HAIDA, Kimiyo Shimomura et al. Caracterização físico-química e atividade antioxidante de amoreira-preta (Morus nigra L.). Revista Brasileira de Ciências da Saúde - Uscs, [s.l.], v. 12, n. 40, p.21-27, 23 maio 2014. USCS Universidade Municipal de Sao Caetano do Sul. http://dx.doi.org/10.13037/rbcs.vol12n40.2185.

HÄKKINEN, Sari H. et al. Influence of Domestic Processing and Storage on Flavonol Contents in Berries. Journal Of Agricultural And Food Chemistry, [s.l.], v. 48, n. 7, p.2960-2965, jul. 2000. American Chemical Society (ACS). http://dx.doi.org/10.1021/jf991274c.

HALVORSEN, Bente L et al. Content of redox-active compounds (ie, antioxidants) in foods consumed in the United States. The American Journal Of Clinical Nutrition, [s.l.], v. 84, n. 1, p.95-135, 1 jun. 2006. Oxford University Press (OUP). http://dx.doi.org/10.1093/ajcn/84.1.95.

HIDALGO, Gádor-indra; ALMAJANO, María. Red Fruits: Extraction of Antioxidants, Phenolic Content, and Radical Scavenging Determination. Antioxidants, [s.l.], v. 6, n. 1, p.7, 19 jan. 2017. MDPI AG. http://dx.doi.org/10.3390/antiox6010007.

HORSZWALD, Anna; JULIEN, Heritier; ANDLAUER, Wilfried. Characterisation of Aronia powders obtained by different drying processes. Food Chemistry, [s.l.], v. 141, n. 3, p.2858-2863, dez. 2013. Elsevier BV. http://dx.doi.org/10.1016/j.foodchem.2013.05.103.

JACQUES, Andresa Carolina et al. Estabilidade de compostos bioativos em polpa congelada de amora-preta (Rubus fruticosus) cv. Tupy. Química Nova, [s.l.], v. 33, n. 8, p.1720-1725, 2010. FapUNIFESP (SciELO). http://dx.doi.org/10.1590/s0100-40422010000800019.

KE, Yuan et al. Total anthocyanins and cyanidin-3-O-glucoside contents and antioxidant activities of purified extracts from eight different pigmented plants. Pharmacognosy Magazine, [s.l.], v. 15, n. 60, p.124, 2019. Medknow. http://dx.doi.org/10.4103/pm.pm_162_18.

KUSKOSKI, E. Marta et al. Actividad antioxidante de pigmentos antociánicos. Ciência e Tecnologia de Alimentos, [s.l.], v. 24, n. 4, p.691-693, dez. 2004. FapUNIFESP (SciELO). http://dx.doi.org/10.1590/s0101-20612004000400036.

LAVEFVE, Laura; HOWARD, Luke R.; CARBONERO, Franck. Berry polyphenols metabolism and impact on human gut microbiota and health. Food & Function, [s.l.], v. 11, n. 1, p.45-65, 2020. Royal Society of Chemistry (RSC). http://dx.doi.org/10.1039/c9fo01634a.

LECOUR, S.; LAMONT, K. T.. Natural Polyphenols and Cardioprotection. Mini-reviews In Medicinal Chemistry, [s.l.], v. 11, n. 14, p.1191-1199, 1 dez. 2011. Bentham Science Publishers Ltd.. http://dx.doi.org/10.2174/13895575111091191.

LEITÃO, A. M. Estabilidade físico-química, microbiológica e sensorial de néctar de amora-preta (Rubus spp.), Cv. Tupy, embalado em polipropileno, no armazenamento. 2007. 79f. 2007. Tese de Doutorado. Dissertação (Mestrado em Ciência e Tecnologia Agroindustrial), Universidade Federal de Pelotas (UFPel), Pelotas, RS.

LIANG, Tisong et al. Cyanidin-3-o-glucoside liposome: Preparation via a green method and antioxidant activity in GES-1 cells. Food Research International, [s.l.], v. 125, p.108648, nov. 2019. Elsevier BV. http://dx.doi.org/10.1016/j.foodres.2019.108648.

MACHADO, Taiana Ferreira; MONTEIRO, Eduarda Rodrigues; TIECHER, Aline. Estabilidade química, físico-química e antioxidante de polpa de Physalis pasteurizada e não pasteurizada sob congelamento. Brazilian Journal Of Food Technology, [s.l.], v. 22, e2017149, 2019. FapUNIFESP (SciELO). http://dx.doi.org/10.1590/1981-6723.14917.

MEDA, Aline et al. Determination of the total phenolic, flavonoid and proline contents in Burkina Fasan honey, as well as their radical scavenging activity. Food Chemistry, [s.l.], v. 91, n. 3, p.571-577, jul. 2005. Elsevier BV. http://dx.doi.org/10.1016/j.foodchem.2004.10.006.

MOTA, Renata Vieira da. Caracterização física e química de geléia de amora-preta. Ciência e Tecnologia de Alimentos, [s.l.], v. 26, n. 3, p.539-543, set. 2006. FapUNIFESP (SciELO). http://dx.doi.org/10.1590/s0101-20612006000300009.

PEREIRA, Sónia R.; ALMEIDA, Leonor M.; DINIS, Teresa C.p.. Cyanidin-3-glucoside potentiates the anti-inflammatory and antioxidant activity of 5-aminosalicylic acid, in an in vitro model of inflammation. Free Radical Biology And Medicine, [s.l.], v. 120, p.124-125, maio 2018. Elsevier BV. http://dx.doi.org/10.1016/j.freeradbiomed.2018.04.410.

RE, Roberta et al. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology And Medicine, [s.l.], v. 26, n. 9-10, p.1231-1237, maio 1999. Elsevier BV. http://dx.doi.org/10.1016/s0891-5849(98)00315-3.

ROJAS-BARQUERA, Dayana; NARVÁEZ-CUENCA, Carlos-eduardo. Determinación de vitamina C, compuestos fenólicos totales y actividad antioxidante de frutas de guayaba (Psidium guajava L.) cultivadas en Colombia. Química Nova, [s.l.], v. 32, n. 9, p.2336-2340, 2009. FapUNIFESP (SciELO). http://dx.doi.org/10.1590/s0100-40422009000900019.

SANTOS, Bruna Aparecida dos et al. CARACTERIZAÇÃO QUÍMICA E NUTRICIONAL DE POLPA DE FRUTAS ARMAZENADAS SOB CONGELAMENTO. Revista da Universidade Vale do Rio Verde, [s.l.], v. 17, n. 1, p.1-13, 2019. Universidade Vale do Rio Verde (UninCor). http://dx.doi.org/10.5892/ruvrd.v17i1.5049.

SARTORI, Giliani Veloso; COSTA, Caroline Nunes da; RIBEIRO, Alessandra Braga. Phenolic content and antioxidant activity of frozen fruit pulp. Revista Brasileira de Pesquisa em Alimentos, [s.l.], v. 5, n. 3, p.23-29, 12 dez. 2014. Federal University of Technology - Parana. http://dx.doi.org/10.14685/rebrapa.v5i3.143.

SELLAPPAN, Subramani; AKOH, Casimir C.; KREWER, Gerard. Phenolic Compounds and Antioxidant Capacity of Georgia-Grown Blueberries and Blackberries. Journal Of Agricultural And Food Chemistry, [s.l.], v. 50, n. 8, p.2432-2438, abr. 2002. American Chemical Society (ACS). http://dx.doi.org/10.1021/jf011097r.

SERRA, Diana; ALMEIDA, Leonor M.; DINIS, Teresa C.p.. Anti-inflammatory protection afforded by cyanidin-3-glucoside and resveratrol in human intestinal cells via Nrf2 and PPAR-γ: Comparison with 5-aminosalicylic acid. Chemico-biological Interactions, [s.l.], v. 260, p.102-109, dez. 2016. Elsevier BV. http://dx.doi.org/10.1016/j.cbi.2016.11.003.

SINGLETON, Vernon L.; ORTHOFER, Rudolf; LAMUELA-RAVENTÓS, Rosa M.. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Oxidants And Antioxidants Part A, [s.l.], p.152-178, 1999. Elsevier. http://dx.doi.org/10.1016/s0076-6879(99)99017-1.

TIAN, Qingguo et al. Urinary Excretion of Black Raspberry (Rubus occidentalis) Anthocyanins and Their Metabolites. Journal Of Agricultural And Food Chemistry, [s.l.], v. 54, n. 4, p.1467-1472, fev. 2006. American Chemical Society (ACS). http://dx.doi.org/10.1021/jf052367z.

TSUDA, Takanori et al. Oxidation products of cyanidin 3-O-β-d-glucoside with a free radical initiator. Lipids, [s.l.], v. 31, n. 12, p.1259-1263, dez. 1996. Wiley. http://dx.doi.org/10.1007/bf02587910.

TSUDA, Takanori; HORIO, Fumihiko; OSAWA, Toshihiko. Absorption and metabolism of cyanidin 3-O-β-D-glucoside in rats. Febs Letters, [s.l.], v. 449, n. 2-3, p.179-182, 23 abr. 1999. Wiley. http://dx.doi.org/10.1016/s0014-5793(99)00407-x.v

VITAGLIONE, Paola et al. Protocatechuic Acid Is the Major Human Metabolite of Cyanidin-Glucosides. The Journal Of Nutrition, [s.l.], v. 137, n. 9, p.2043-2048, 1 set. 2007. Oxford University Press (OUP). http://dx.doi.org/10.1093/jn/137.9.2043.

VIZZOTTO, Márcia et al. Teor de compostos fenólicos e atividade antioxidante em diferentes genótipos de amoreira-preta (Rubus sp.). Revista Brasileira de Fruticultura, [s.l.], v. 34, n. 3, p.853-858, set. 2012. FapUNIFESP (SciELO). http://dx.doi.org/10.1590/s0100-29452012000300027.

WEN, Yao et al. A polyamide resin based method for adsorption of anthocyanins from blackberries. New Journal Of Chemistry, [s.l.], v. 40, n. 4, p.3773-3780, 2016. Royal Society of Chemistry (RSC). http://dx.doi.org/10.1039/c6nj00054a.

WEN, Yao et al. Optimization of the microwave-assisted extraction and antioxidant activities of anthocyanins from blackberry using a response surface methodology. Rsc Advances, [s.l.], v. 5, n. 25, p.19686-19695, 2015. Royal Society of Chemistry (RSC). http://dx.doi.org/10.1039/c4ra16396f.

WU, Xianli; PITTMAN, Hoy E.; PRIOR, Ronald L.. Fate of Anthocyanins and Antioxidant Capacity in Contents of the Gastrointestinal Tract of Weanling Pigs Following Black Raspberry Consumption. Journal Of Agricultural And Food Chemistry, S.l., v. 54, n. 2, p.583-589, 22 dez. 2005. American Chemical Society (ACS). https://doi.org/10.1021/jf052108+.

WU, Xianli; PRIOR, Ronald L.. Systematic Identification and Characterization of Anthocyanins by HPLC-ESI-MS/MS in Common Foods in the United States: Fruits and Berries. Journal Of Agricultural And Food Chemistry, [s.l.], v. 53, n. 7, p.2589-2599, abr. 2005. American Chemical Society (ACS). http://dx.doi.org/10.1021/jf048068b.

ZANATTA, Cinthia Fernanda et al. Determination of Anthocyanins from Camu-camu (Myrciaria dubia) by HPLC−PDA, HPLC−MS, and NMR. Journal Of Agricultural And Food Chemistry, [s.l.], v. 53, n. 24, p.9531-9535, nov. 2005. American Chemical Society (ACS). http://dx.doi.org/10.1021/jf051357v.

ZHANG, Lixia et al. Compositions of anthocyanins in blackberry juice and their thermal degradation in relation to antioxidant activity. European Food Research And Technology, [s.l.], v. 235, n. 4, p.637-645, 5 ago. 2012. Springer Science and Business Media LLC. http://dx.doi.org/10.1007/s00217-012-1796-6.




DOI: https://doi.org/10.34117/bjdv6n3-401

Refbacks

  • There are currently no refbacks.