Influence of different methods of potential evapotranspiration estimation in the catolé grande river flow using the swat model / Influência de diferentes métodos de estimativa de evapotranspiração potencial na vazão do rio catolé grande usando o modelo swat

Lorena Lima Ferraz, Lucas Farias de Sousa, Cristiano Tagliaferre, Joseane Oliveira da Silva, Carlos Amilton Silva Santos, Felizardo Adenilson Rocha

Abstract


The evapotranspiration is an important element in the hydrological simulation for flow estimation, infiltration calculations, and drought forecasting models. Several equations vary in the amount of input data and can be used to estimate annual, monthly and daily evapotranspiration in different regions around the world. In the present study, the potential evapotranspiration of the Catolé Grande river basin was estimated by three SWAT methods: Penman-Monteith, Hargreaves-Samani, and Priestley Taylor. The influence of the use of these methods was evaluated in the simulated Catolé river flow using the coefficient of determination (R²), Nash-Sutcliffe and the Pbias index. The results of the statistical coefficients showed that the change in the estimation method of potential evapotranspiration affected the simulated flow. Statistical analysis using the Mann-Whitney test indicated that the Penman-Monteith and Hargreaves-Samani models did not show significant differences in flow response, while Priesley-Taylor influenced considerably the estimation result, overestimating all flow values, not being relevant to minimize damages caused by possible large floods, as well as to assist in the development of studies associated with hydrographic rise periods. Thus, the Hargreaves-Samani and Penman-Monteih methods proved adequate for hydrological modeling of the Catolé Grande river basin.


Keywords


ETo estimation method, hydrological modeling, simulation.

Full Text:

PDF

References


ALLEN, R. G.; PEREIRA, L.; RAES, D.; SMITH, M. Crop evapotranspiration: guidelines for computing crop water requirements. Rome: FAO, 1998. (FAO. Irrigation and Drainage Paper, 56). Disponível em: Acesso em: 19 dez. 2018.

ANDRADE, M. A.; MELLO, C. R.; BESKOW, S. Simulação hidrológica em uma bacia hidrográfica representativa dos Latossolos na região Alto Rio Grande, MG. Revista Brasileira de Engenharia Agrícola e Ambiental, v. 17, n. 1, p.69–76, 2013.

AOUISSI, J.; BENABDALLAH, S.; CHABAAÂNE, Z. L.; CUDENNEC, C. Evaluation of potential evapotranspiration assessment methods for hydrological modelling with SWAT—Application in data-scarce rural Tunisia. Agricultural Water Management, n. 174, p. 39-51, 2016.

BALBINOT, R.; OLIVEIRA, N. K.; VANZETTO, S. C.; PEDROSO, K.; VALÉRIO, A. F. O papel da floresta no ciclo hidrológico em bacias hidrográficas. Ambiência, vol. 4, n. 1, 2008.

GASSMAN, P. W.; REYES, M. R.; GREEN C. H.; ARNOLD, J. G. The soil and water assessment tool: historical development, applications, and future research directions. Transaction of the ASABE, v.50, p.1211-1250, 2007.

HARGREAVES, G. H.; SAMANI, Z. A. Reference crop evapotranspiration from temperature. Appl. Eng. Agric., vol. 1, p. 96-99, 1985.

JENSEN, M. E.; BURMAN, R. D.; ALLEN, R. G. Evapotranspiration and Irrigation Water Requirements. ASCE Manuals and Reports on Eng. Practice, n. 70, 1990.

KAVIAN, A.; BAHRAMI, M.; ROUHANI, H. Comparison of Potential Evapotranspiration Estimation Methods in Stream flow Modeling Using SWAT in Taleghan Watershed. Desert Ecosystem Engineering Journal, vol. 6, n. 15, p. 115-125, 2017.

MCKENNEY, M. S.; ROSENBERG, N. J. Sensitivity of some potential evapotranspiration estimation methods to climate change. Agricultural and Forest Meteorology, vol. 64, n. 1-2, p. 81–110, 1993.

MONTEITH, J. L. Evaporation and Environment. Symp. Soc. For Exper. Biol., vol. 19, p. 205-234, 1965.

MORIASI, D. N.; GITAU, M. W.; PAI, N.; DAGGUPATI, P. Hydrologic and water quality models: Performance measures and evaluation criteria. Trans. ASABE, vol. 58, n.6, p. 1763-1785, 2015.

NASH, J.; SUTCLIFFE, J. River flow forecasting through conceptual models: Part I. A discussion of principles. Jounal of Hydrology, vol. 10, n. 3, p. 282-290, 1970.

PEREIRA, D. D. R.; MARTINEZ, M. A.; ALMEIDA, A. Q.; PRUSKI, F. F.; SILVA, D. D.; ZONTA, J. H. Hydrological simulation using SWAT model in headwater basin in Southeast Brazil. Eng. Agríc., vol. 34, n.4, p. 789–799, 2014.

PEREIRA, A. R.; VILLA NOVA, N. A.; SEDIYAMA, G. C. Evapo(transpi)ração. Piracicaba: FEALQ. 1997. 183p.

PRIESTLEY, C. H. B.; TAYLOR, R. J. On the Assessment of Surface Heat Flux and Evaporation Using Large Scale Parameters. Mon. Weather Rev., vol. 100, p. 81-92, 1972.

SANTOS, C. A. S.; ALMEIDA, C.; RAMOS, T. B.; ROCHA, F. A.; OLIVEIRA, R.; NEVES, R. Using a Hierarchical Approach to Calibrate SWAT and Predict the Semi-Arid Hydrologic Regime of Northeastern Brazil. Water, vol. 10, n. 9, p. 1137, 2018.

SEI - Superintendência de Estudos Econômicos e Sociais da Bahia. Tipologia climática de Köppen. Estado da Bahia. 1998. Disponível em: . Acesso em: 04 fev. 2019.

SILVA, V. P. R. et al. Methods for estimating the sugarcane evapotranspiration under rainfed conditions. Revista Brasileira de Engenharia Agrícola e Ambiental, v. 19, n. 5, p. 411–417, 2015.

SCHNEIDER, K.; KETZER, B.; BREUER, L.; VACHÉ, K. B.; BERNHOFER, C.; FREDE, H. G. Evaluation of evapotranspiration methods for model validation in a semi-arid watershed in northern China. Advances in Geosciences, vol. 11, p. 37-42, 2007.

TUCCI, C. E. M. Modelos hidrológicos. 2.ed. Porto Alegre: ABRH/Editora da UFRGS, 2005.

WANG, X.; MELESSE, A. M.; YANG, W. Influences of potential evapotranspiration estimation methods on swat’s hydrologic simulation in a Northwestern Minnesota watershed. Transactions of the ASABE, vol. 49, n. 6, p. 1755-1771, 2006.




DOI: https://doi.org/10.34117/bjdv6n3-307

Refbacks

  • There are currently no refbacks.