Apparent digestibility coefficient of chitosan foam for nile tilapia

Izabel Volkweis Zadinelo, Lilian Dena dos Santos, Helton José Alves, Rafaela Mocochinski Gonçalves, Marlise Teresinha Mauerwerk, Lilian Carolina Rosa da Silva, Eduardo Luis Cupertino Ballester, Robie Allan Bombardelli

Abstract


 Chitosan foam can be used as a filter element for pollutants in Nile tilapia farming tanks to reduce the industrial chitin waste and value it. Another possibility is the inclusion of chitosan foam in fish feed. Therefore, this study aims at evaluating the apparent digestibility of nutrients and energy of chitosan foam for Nile tilapia. Apparent digestibility determination was carried out by the indirect fecal collection method, using chromic oxide as an inert indicator, a reference-diet and a test diet (70% reference-diet and 30% chitosan foam). Hence, 120 juveniles of Nile tilapia (50 ± 5 g) were used, divided into six replications. After the collection period, bromatological analyses of foam, diets and feces were carried out, as well as the determination of chromium concentration in feces. The coefficients of apparent digestibility concerning nutrients and energy were then calculated. Chitosan foam showed 83.7% digestible dry matter, 5.7% digestible protein, 7.9% digestible fat, 0.6% digestible ashes, 17.6% digestible crude fiber  and 1021 kcal kg-1 digestible energy for juveniles of Nile tilapia. It can be concluded that chitosan foam is partially digestible for Nile tilapia and can be used mainly as a feed source of fiber and fat.


Keywords


alternative feed; biopolymers; filter element; sustainability.

Full Text:

PDF

References


Association of Official Analytical Chemists (AOAC). 2005. Official methods of analysis. 18th ed. Gaithersburg, Maryland.

Baumgarten MGZ. 1996. Manual de análises em oceanografia química. Reo Grande: Ed. Furg, 132p. ISBN: 858504246X.

Bernardi F, Zadinelo IV, Alves HJ, Meurer F and Santos LD. 2018. Chitins and chitosans for the removal of total ammonia of aquaculture effluents. Aquac, 483 (20): 203-212. DOI:10.1016/j.aquaculture.2017.10.027.

Bessa-Junior AP and Gonçalves AA. 2013. Análises econômica e produtiva da quitosana extraída do exoesqueleto de camarão. Acta Fish Aquat Res 1: 13-28. https://doi.org/10.2312/Actafish.2013.1.1.13-28

Bomfim MAD. 2013. Estratégias Nutricionais para Redução das Excreções de Nitrogênio e Fósforo nos Sistemas de Produção de Peixes no Nordeste: Sustentabilidade Ambiental e Aumento da Produtividade. Rev Cient Prod Anim 15 (2): 122-140. DOI: DOI: 10.15528/2176-4158/rcpa.

Boscolo WR, Hayashi C, Meurer F, Feiden A AND Bombardelli RA. 2004. Apparent digestibility of energy and protein of tilapia (Oreochromis niloticus) and corvine (Plagioscion squamosissiums) by-product meal and canela crayfish (Macrobrachium amazonicum) meal for Nile. R Bras Zootec 33: 8-13. DOI: 10.1590/S1516-35982004000100002

Bureau DP, Harris AM and Cho CY. 1999. Apparent digestibility of rendered animal protein ingredients for rainbow trout (Oncorhynchus mykiss). Aquac, 180: 345-358.

Bureau DP and Hua K. 2006. Letter to the editor of aquaculture. Aquac, 252: 103-105. DOI: 10.1016/j.aquaculture.

Chung YC, Li YH and Chen CC. 2005. Pollutant removal from aquaculture wastewater using the biopolymer chitosan at different molecular weights. J J. Environ. Sci. Health A: Toxic/Hazardous Substances and Environmental Engineering, 40 (9): 1775-1790. https://doi.org/10.1081/ESE-200068058

Detmann E, Silva JFC, Clipes RC, Henriques LT, Valadares Filho SC, Queiroz AC and Paulino MF. 2010. Estimação por aproximação química dos teores de proteína indegradável insolúvel em detergente neutro em forragens tropicais. Arq Bras Med Vet Zootec 62 (3): 742-746. DOI:10.1590/S0102-09352010000300033.

Queiroz Antonino RSCM, Lia Fook BRP, Oliveira Lima VA, Rached Rif, Lima RJF, Covas CAP and Fook MVL, 2017. Preparation and characterization of chitosan obtained from shells of shrimp (Litopenaeus vannamei Boone). Mar Drugs, 15 (5): 141. DOI: 10.3390/md15050141.

Ghannam HE, Talab AS, Dolganova NV, Hussein AMS and Abdelmaguid NM. 2016. Characterization of chitosan extracted from different crustacean shell wastes. J Appl Sci 16: 454-461. DOI: 10.3923/jas.2016.454.461.

Giuntini EB and Menezes EW 2011. Funções plenamente reconhecidas dos nutrientes: Fibra alimentar. São Paulo: Ed ILSI-Brasil (International life sciences institute do Brasil), 18: 28p. ISBN: 978-85-86126-36-9.

Kimura FT and Miller VL. 1957. Improved determination of chromic oxide in cal feed and feces. J Agric Food Chem 5 (2). https://doi.org/10.1021/jf60073a008

Kyzas GZ and Bikiaris DN. 2015. Recent modifications of chitosan for adsorption applications: a critical and systematic review. Mar Drugs, 13: 312-337. DOI:10.3390/md13010312.

Kono M, Matsui T and Shimizu C. 1987. Effect of chitin, chitosan and cellulose as diet supplements on the growth of cultured fish. Nippon Suisan Gakk 53: 125-129. DOI: 10.2331/suisan.53.125

Koroleff F. 1976. Determination of nutrients. In: Grasshoff, K. (ed.) Methods of seawater analysis. Verlag Chemie Weinhein, p.117-181. https://doi.org/10.1002/9783527613984.ch10

Köprücü K and Özdemir Y. 2005. Apparent digestibility of selected feed ingredients for Nile tilapia (Oreochromis niloticus). Aquac 250: 308-316. DOI: 10.1016/j.aquaculture.2004.12.003

Kumari S, Rath P, Sri Hari Kumar A and Tiwari TN. 2015. Extraction and characterization of chitin and chitosan from fishery waste by chemical method. Environ Technol Innov 3: 77-85. DOI: 10.1016/j.eti.2015.01.002.

Lima SBP, Rabelo BVC, Dutra-Junior MW, Ludke MM, Carmo M, Costa P and Guilherme F. 2007. Valor nutricional da farinha da cabeça do camarão Marinho Litopenaeus Vannamei para frangos de corte. Caat 20 (3): 38-41. ISSN 0100-316X.

Macêdo JAB. 2003. Métodos Laboratoriais de Análises Físico-Químicas e Microbiológicas. 2ª Ed. Belo Horizonte: CRQ-M.G. 450p. ISBN-13: 978-85-909561-3-6.

Muniz GIB, Masson ML AND Ellendersen LSN. 2015. Instituição de registro: INPI - Instituto Nacional da Propriedade Industrial. Patente: Privilégio de Inovação. Número do registro BR1020150292597: Uso e obtenção de espuma seca e pó de quitosana e nanoquitosana por processo de secagem pelo método de camada de espuma. https://patentimages.storage.googleapis.com/c3/91/d8/f1ea27a1d27f98/WO2017088038A1.pdf

National Research Council (NRC). 1993. Nutrient requirements of warm water, fishes and shellfishes: nutrient requirements of domestic animals. Washington: National Academy Press, 114p. DOI: 10.17226/20664

Olsen RE, Suontama J and Langmyhr E. 2006. The replacement of fish meal with Antarctic krill, Euphausia superba in diets for Atlantic salmon, Salmosalar. Aquac Nutr 12: 280-290. DOI: 10.1111/j.1365-2095.2006.00400.x.

Santos EL, Winterle WMC, Ludke MC and Barbosa JM. 2008. Digestibilidade de ingredientes alternativos para tilápia-do-Nilo (Oreochromis niloticus): revisão. Rev Bras Eng Pesca 3 (2): 135-149. //doi.org/10.18817/repesca.v3i2.93

Silva DJ and Queiroz AC. 2002. Análise de Alimentos: métodos químicos e biológicos. 3.ed. Viçosa: UFV, 235p. ISBN: 8572691057

Shiau S and Yu Y. 1999. Dietary supplementation of chitin and chitosan depresses growth in tilapia, Oreochromis niloticus X O. aureus. Aquac 179: 439-446. DOI: 10.1016/S0044-8486(99)00177-5

Undersander D, Mertens DR and Thiex N. 1993. Forage analyses procedures. Omaha: National Forage Testing Association, 139 p. Available in:

Zadinelo IV, Santos L, CagoL L, Muniz GIB, Ellendersen LSN, Alves HJ and Bombardelli RA. 2018. Adsorption of aquaculture pollutants using a sustainable biopolymer. Environ Sci Pollut R 5 (25): 4361-4370. DOI: 10.1007/s11356-017-0794-4.




DOI: https://doi.org/10.34117/bjdv6n3-036

Refbacks

  • There are currently no refbacks.