Análise físico-química de diferentes resíduos agroindustriais para possível utilização na indústria / Physico-chemical analysis of different agro-industrial residues for its use in the industry

Luiza Helena da Silva Martins, Evelyn Mayumi Hanawa Konagano, Raphael Luiz Lobo da Silva Souza, Alessandra Santos Lopes

Abstract


A geração de resíduos na indústria alimentícia a partir do processamento de grãos, frutas e vegetais é muito comum e, em muitos casos, esses resíduos não possuem uma destinação apropriada. Com isso, este trabalho objetivou a avaliação da composição físico-química de diferentes resíduos da agroindústria, a fim de encontrar potencial para a reutilização dos mesmos. Assim, os materiais para este estudo foram: casca do maracujá, caroço de açaí, palha de arroz, casca do fruto do cacau e casca da semente do cacau, os quais foram submetidos às análises de umidade por infravermelho; teor de resíduo mineral fixo total (cinzas), lipídios totais, proteínas totais e pH, mensurados de acordo com o descrito pela AOAC. Com isso, pôde-se observar potenciais distintos em cada matéria-prima para o reaproveitamento dos mesmos, onde a casca do maracujá pode ser utilizada como suplemento alimentar, devido ao alto teor de fibras, descrito na literatura. O caroço do açaí pode ser utilizado na geração de energia, devido ao baixo teor de cinzas, bem como na suplementação alimentar de aves. A palha de arroz pode tanto auxiliar na produção de materiais como cimento e sílica, como na suplementação na ração animal.  A casca do fruto do cacau pode auxiliar na nutrição de solos e na dieta animal e a casca da semente do cacau pode ser utilizada na formulação de meios de cultivo para microrganismos e/ou tecidos vegetais.


Keywords


resíduos agroindustriais; físico-química; reutilização.

References


ABBOUD, K. Y. et al. Gastroprotective effect of soluble dietary fibres from yellow passion fruit (Passiflora edulis f. flavicarpa) peel against ethanol-induced ulcer in rats. Journal of Functional Foods, v. 54, n. August 2018, p. 552–558, 2019.

ADAMAFIO, N.A et al. Biochemical composition and in vitro digestibility of cocoa (Theobroma cacao) pod husk, cassava (Manihot esculenta) peel and plantain (Musa paradisiacal) peel. Ghana Journal of Science, v. 44, n. 1, 25 Sep. 2004. Disponível em: .

ALEMAWOR, F. et al. Enzyme cocktail for enhancing poultry utilisation of cocoa pod husk. Scientific Research and Essay, v. 4, n. 6, p. 555–559, 2009. Disponível em: .

ALTMAN, R.F.A. Estudo químico de plantas amazônicas. Boletim Técnico do Instituto Agronômico do Norte, v. 31, p. 109–111, 1956.

AOAC. ASSOCIATION OF OFFICIAL ANALYTICAL CHEMISTS. Official Methods of Analysis of The AOAC International. 16 ed. Arlington, 2006.

ARRUDA, J. C. B. et al. Açaí seed bran in the feed of slow-growth broilers. Acta Amazonica, v. 48, n. 4, p. 298–303, 2018.

AYENI, L.S et al. Comparative and Cumulative Effect of Cocoa Pod Husk Ash and Poultry Manure on Soil and Maize Nutrient Contents and Yield. American-Eurasian Journal of Sustainable Agriculture, v. 2, n. 1, p. 92–97, 2008.

BANERJEE, J. et al. Bioactives from fruit processing wastes: Green approaches to valuable chemicals. Food Chemistry, v. 225, p. 10–22, 2017. Disponível em: .

BELAL, E. B. Bioethanol production from rice straw residues. Brazilian Journal of Microbiology, v. 44, n. 1, p. 225-234, 2013.

BELEWU M. A e BABALOLA F. T. Nutrient enrichment of waste agricultural residues after solid state fermentation using Rhizopus oligosporus. Journal of Applied Biosciences, 2009.

BUFALINO, L. et al. Local variability of yield and physical properties of açaí waste and improvement of its energetic attributes by separation of lignocellulosic fibers and seeds. Journal of Renewable and Sustainable Energy, 2018.

CARRILLO-NIEVES, D. et al. Current status and future trends of bioethanol production from agro-industrial wastes in Mexico. Renewable and Sustainable Energy Reviews, v. 102, n. June 2018, p. 63–74, 2019.

CHEEWAPHONGPHAN, P. et al. Study on the potential of rice straws as a supplementary fuel in very small power plants in Thailand. Energies, 2018.

COELHO, E. M. et al. Passion fruit peel flour – Technological properties and application in food products. Food Hydrocolloids, v. 62, p. 158–164, 2017.

DE SOUZA, C. B. et al. Characterization and in vitro digestibility of by-products from Brazilian food industry: Cassava bagasse, orange bagasse and passion fruit peel. Bioactive Carbohydrates and Dietary Fibre, v. 16, p. 90–99, 2018. Disponível em: .

DELGADO ADÁMEZ, J. et al. In vitro estimation of the antibacterial activity and antioxidant capacity of aqueous extracts from grape-seeds (Vitis vinifera L.). Food Control, 2012.

DO ESPÍRITO SANTO, A. P. et al. Influence of milk type and addition of passion fruit peel powder on fermentation kinetics, texture profile and bacterial viability in probiotic yoghurts. LWT - Food Science and Technology, v. 47, n. 2, p. 393–399, 2012. Disponível em: .

DOMÍNGUEZ-RODRÍGUEZ, G. et al. Revalorization of Passiflora species peels as a sustainable source of antioxidant phenolic compounds. Science of the Total Environment, v. 696, p. 134030, 2019. Disponível em: .

DONKOH, A. et al. Chemical composition of cocoa pod husk and its effect on growth and food efficiency in broiler chicks. Animal Feed Science and Technology, v. 35, n. 1–2, p. 161–169, 1991.

DRAKE, D.; NADER, G.; FORERO, L. Feeding rice straw to cattle. UCANR Publications, 2002.

EKPA, O.; AKPAN, A. A.; UDO, A. E. Industrially important parameters and mineral composition of cocoa: A comparative study of cocoa pod husks and beans from plantations in south-eastern Nigeria. Journal of the Science of Food and Agriculture, v. 61, n. 1, p. 47–50, 1993. Disponível em: .

EL-SAYED, Mohamed A.; EL-SAMNI, Taher M. Physical and Chemical Properties of Rice Straw Ash and Its Effect on the Cement Paste Produced from Different Cement Types. Journal of King Saud University - Engineering Sciences, 2006.

HANDOJO, L.; TRIHARYOGI, H.; INDARTO, A. Cocoa bean shell waste as potential raw material for dietary fiber powder. International Journal of Recycling of Organic Waste in Agriculture, 2019.

HE, P. et al. Optimisation of the harvesting time of rice in moist and non-moist dispersed fields. Biosystems Engineering, v. 170, p. 12–23, 2018. Disponível em: .

JULIAN, A. V.; REYES, R. G.; EGUCHI, F. Agro-Industrial Waste Conversion Into Medicinal Mushroom Cultivation. 2018.

KATALINIĆ, V. et al. Polyphenolic profile, antioxidant properties and antimicrobial activity of grape skin extracts of 14 Vitis vinifera varieties grown in Dalmatia (Croatia). Food Chemistry, 2010.

KHANAHMADI, S. et al. Cocoa pod husk: A new source of CLEA-lipase for preparation of low-cost biodiesel: An optimized process. Journal of Biotechnology, 2016.

MACAGNAN, F. T. et al. Biological properties of apple pomace, orange bagasse and passion fruit peel as alternative sources of dietary fibre. Bioactive Carbohydrates and Dietary Fibre, 2015.

MADIGAN, M. T. et al. Microbiologia de Brock-14ª Edição. Artmed Editora, 2016.

MONTEIRO, A. F. et al. High concentration and yield production of mannose from açaí (Euterpe oleracea Mart.) seeds via mannanase-catalyzed hydrolysis. Scientific Reports, 2019.

NGUYEN, T. A. D. et al. Pretreatment of rice straw with ammonia and ionic liquid for lignocellulose conversion to fermentable sugars. Bioresource Technology, 2010.

OKIYAMA, D. C. G; NAVARRO, S. L. B; RODRIGUES, C. E. C. Cocoa shell and its compounds: Applications in the food industry. Trends in Food Science and Technology, v. 63, p. 103–112, 2017. Disponível em: .

PANAK BALENTIĆ, J. et al. Cocoa shell: A by-product with great potential for wide application. Molecules, v. 23, n. 6, p. 1404, 2018.

PESSOA, J. D. C. et al. Characterization of Açaí (E. oleracea) fruits and its processing residues. Brazilian Archives of Biology and Technology, 2010.

PROTÁSIO, T. D. P. et al. Brazilian Lignocellulosic Wastes for Bioenergy Production: Characterization and Comparison with Fossil Fuels. BioResources, v. 8, n. 1, Jan. 2013.

SADH, P. K.; DUHAN, S.; DUHAN, J. S. Agro-industrial wastes and their utilization using solid state fermentation: a review. Bioresources and Bioprocessing, v. 5, n. 1, p. 1–15, 2018. Disponível em: .

SATO, M. K. et al. Biochar from Acai agroindustry waste: Study of pyrolysis conditions. Waste Management, 2019.

SHARMA, R.; OBEROI, H. S.; DHILLON, G. S. Fruit and Vegetable Processing Waste: Renewable Feed Stocks for Enzyme Production. [S.l.]: Elsevier Inc., 2016. Disponível em: .

SOUZA, M. W. S.; FERREIRA, T. B. O.; VIEIRA, I. F. R. Composição centesimal e propriedades funcionais tecnológicas da farinha da casca do maracujá. Alimentos e Nutrição Araraquara, 2008.

VÁSQUEZ, Z. S. et al. Biotechnological approaches for cocoa waste management: A review. Waste Management, v. 90, p. 72–83, 2019.

VRIESMANN, L. C.; DE MELLO CASTANHO AMBONI, R. D.; DE OLIVEIRA PETKOWICZ, C. L. Cacao pod husks (Theobroma cacao L.): Composition and hot-water-soluble pectins. Industrial Crops and Products, v. 34, n. 1, p. 1173–1181, 2011.

YAMAGUCHI, K. K. D. L. et al. Amazon acai: Chemistry and biological activities: A review. Food chemistry, v. 179, p. 137-151, 2015. Disponível em: .

YUSOF, F. et al. Cocoa pod husk, a new source of hydrolase enzymes for preparation of cross-linked enzyme aggregate. SpringerPlus, 2016.

ZAKY, R. R. et al. Preparation of silica nanoparticles from semi-burned rice straw ash. Powder Technology, 2008.




DOI: https://doi.org/10.34117/bjdv6n2-116

Refbacks

  • There are currently no refbacks.