Proteínas vegetais como alimentos funcionais - revisão / Vegetable proteins as functional foods – review

Eloize da Silva Alves, Luciana Alves da Silva, Bruno Henrique Figueiredo Saqueti, Carla Adriana Ferrari Artilha, Denise de Moraes Batista da Silva, Luana Cristina Silva de Sousa, Monica Regina da Silva Scapim, Jesui Vergílio Visentainer


Alimentos vegetais possuem propriedades biológicas, podendo ser considerados alimentos potencialmente funcionais ou de promoção da saúde. Em espécies vegetais, as proteínas são de bastante interesse, estão presentes em diferentes partes de sua estrutura. Algumas de suas propriedades funcionais são atribuídas a peptídeos e proteínas biologicamente ativos, para esta atividade requer hidrólise de proteínas por digestão: enzimática, fermentação ou autólise. Além disso, as proteínas de origem vegetal exercem poder antioxidante em produtos, agregando valor a produtos. Na área alimentícia torna-se crescente a procura de antioxidantes naturais, pois além de agregar valor nutricional e baixo custo. Como objetivo para este trabalho, trata-se de avaliar por bases literárias as propriedades benéficas à saúde fornecidas por proteínas de origem vegetal.


Proteína vegetal, proteína, vegetais, alimentos funcionais.


ADEBIYI, Abayomi Peter et al. Purification and characterization of antioxidative peptides derived from rice bran protein hydrolysates. European Food Research and Technology, v. 228, n. 4, p. 553, 2009.

AGRAWAL, Himani; JOSHI, Robin; GUPTA, Mahesh. Purification, identification and characterization of two novel antioxidant peptides from finger millet (Eleusine coracana) protein hydrolysate. Food research international, v. 120, p. 697-707, 2019.

AKIN, Zeynep; OZCAN, Tulay. Functional properties of fermented milk produced with plant proteins. LWT, v. 86, p. 25-30, 2017.

AWOLUMATE, Emmanuel O. Accumulation and quality of storage protein in developing cowpea, mung bean and soya bean seeds. Journal of the Science of Food and Agriculture, v. 34, n. 12, p. 1351-1357, 1983.

BARONI, Luciana et al. Vegan nutrition for mothers and children: Practical tools for healthcare providers. Nutrients, v. 11, n. 1, p. 5, 2019.

BETORET, E. et al. Functional foods development: Trends and technologies. Trends in Food Science & Technology, v. 22, n. 9, p. 498-508, 2011.

BILDANOVA, L. L.; SALINA, E. A.; SHUMNY, V. K. Main properties and evolutionary features of antifreeze proteins. Russian Journal of Genetics: Applied Research, v. 3, n. 1, p. 66-82, 2013.

CARRASCO-CASTILLA, Janet et al. Use of proteomics and peptidomics methods in food bioactive peptide science and engineering. Food Engineering Reviews, v. 4, n. 4, p. 224-243, 2012.

CAVAZOS, Ariel; GONZALEZ DE MEJIA, Elvira. Identification of bioactive peptides from cereal storage proteins and their potential role in prevention of chronic diseases. Comprehensive Reviews in Food Science and Food Safety, v. 12, n. 4, p. 364-380, 2013.

CHUANG, Shao-Yuan et al. Vegetarian diet reduces the risk of hypertension independent of abdominal obesity and inflammation: a prospective study. Journal of hypertension, v. 34, n. 11, p. 2164-2171, 2016.

CODA, Rossana et al. Selected lactic acid bacteria synthesize antioxidant peptides during sourdough fermentation of cereal flours. Appl. Environ. Microbiol., v. 78, n. 4, p. 1087-1096, 2012.

COELHO, Michele Silveira et al. In vitro and in vivo antioxidant capacity of chia protein hydrolysates and peptides. Food hydrocolloids, v. 91, p. 19-25, 2019.

DAVIS, Brenda; MELINA, Vesanto. Becoming Vegan: The Complete Reference to Plant-Base Nutrition. Book Publishing Company, 2014.

DICKINSON, Eric. Biopolymer-based particles as stabilizing agents for emulsions and foams. Food Hydrocolloids, v. 68, p. 219-231, 2017.

FARZANA, W.; KHALIL, I. A. Protein quality of tropical food legumes. Journal of Science and Technology, v. 23, p. 13-19, 1999.

GARCÍA, M. C. et al. Vegetable foods: A cheap source of proteins and peptides with antihypertensive, antioxidant, and other less occurrence bioactivities. Talanta, v. 106, p. 328-349, 2013.

HAN, Ruixian et al. Identification of angiotensin converting enzyme and dipeptidyl peptidase-IV inhibitory peptides derived from oilseed proteins using two integrated bioinformatic approaches. Food research international, v. 115, p. 283-291, 2019.

HAN, Sung-Wook; CHEE, Kyu-Man; CHO, Seong-Jun. Nutritional quality of rice bran protein in comparison to animal and vegetable protein. Food chemistry, v. 172, p. 766-769, 2015.

HUANG, Ru-Yi et al. The association between total protein and vegetable protein intake and low muscle mass among the community-dwelling elderly population in northern Taiwan. Nutrients, v. 8, n. 6, p. 373, 2016.

LIN, Duanquan et al. Interactions of vegetable proteins with other polymers: Structure-function relationships and applications in the food industry. Trends in food science & technology, v. 68, p. 130-144, 2017.

LÓPEZ, Débora N. et al. Amaranth, quinoa and chia protein isolates: Physicochemical and structural properties. International journal of biological macromolecules, v. 109, p. 152-159, 2018.

LU, Xin et al. Extraction, identification and structure-activity relationship of antioxidant peptides from sesame (Sesamum indicum L.) protein hydrolysate. Food Research International, v. 116, p. 707-716, 2019.

MARTÍNEZ, Carmen et al. In vitro protein digestibility and mineral availability of green beans (Phaseolus vulgarisL) as influenced by variety and pod size. Journal of the Science of Food and Agriculture, v. 77, n. 3, p. 414-420, 1998.

MESSINA, Virginia; MANGELS, Ann Reed. Considerations in planning vegan diets: Children. Journal of the American dietetic association, v. 101, n. 6, p. 661-669, 2001.

MUDGIL, Priti et al. Multi-functional bioactive properties of intact and enzymatically hydrolysed quinoa and amaranth proteins. LWT, v. 110, p. 207-213, 2019.

NTATSI, Georgia et al. The quality of leguminous vegetables as influenced by preharvest factors. Scientia Horticulturae, v. 232, p. 191-205, 2018.

PAREDES-LÓPEZ, O. et al. Las proteínas vegetales: presente y futuro de la alimentación. Prospectiva de la Biotecnología en México, R. Quintero, ed, p. 331-360, 1985.

RAND, William M.; PELLETT, Peter L.; YOUNG, Vernon R. Meta-analysis of nitrogen balance studies for estimating protein requirements in healthy adults. The American journal of clinical nutrition, v. 77, n. 1, p. 109-127, 2003.

RIZZELLO, Carlo G. et al. Bioactive peptides from vegetable food matrices: Research trends and novel biotechnologies for synthesis and recovery. Journal of Functional Foods, v. 27, p. 549-569, 2016.

RIZZELLO, Carlo G. et al. Highly efficient gluten degradation by lactobacilli and fungal proteases during food processing: new perspectives for celiac disease. Appl. Environ. Microbiol., v. 73, n. 14, p. 4499-4507, 2007.

SEBASTIANI, Giorgia et al. The effects of vegetarian and vegan diet during pregnancy on the health of mothers and offspring. Nutrients, v. 11, n. 3, p. 557, 2019.

SEGURA-NIETO, M.; BARBA DE LA ROSA, A. P.; PAREDES-LÓPEZ, O. Biochemistry of amaranth proteins. CRC Press: Boca Raton, FL, 1994.

SEPTEMBRE-MALATERRE, Axelle; REMIZE, Fabienne; POUCHERET, Patrick. Fruits and vegetables, as a source of nutritional compounds and phytochemicals: Changes in bioactive compounds during lactic fermentation. Food Research International, v. 104, p. 86-99, 2018.

SHAHIDI, Fereidoon; ZHONG, Ying. Bioactive peptides. Journal of AOAC International, v. 91, n. 4, p. 914-931, 2008.

TIELEMANS, Susanne MAJ et al. Associations of plant and animal protein intake with 5-year changes in blood pressure: The Zutphen Elderly Study. Nutrition, Metabolism and Cardiovascular Diseases, v. 24, n. 11, p. 1228-1233, 2014.

TRICHOPOULOU, Antonia et al. Definitions and potential health benefits of the Mediterranean diet: views from experts around the world. BMC medicine, v. 12, n. 1, p. 112, 2014.

YOUNG, Vernon R.; PELLETT, Peter L. Plant proteins in relation to human protein and amino acid nutrition. The American journal of clinical nutrition, v. 59, n. 5, p. 1203S-1212S, 1994.



  • There are currently no refbacks.