Study of the influence of different synthesis methods and precipitating agents in generation of nanoparticles of zirconium oxide / Estudo da influência de diferentes métodos de síntese e agentes precipitantes na geração de nanopartículas de óxido de zircônio

Ulisses Alberto Rodrigues da Silva, Cesário Francisco das Virgens, Diniz Alves de Sant’Ana Silva, Ricardo Reis Soares

Abstract


Zirconia was synthesized and characterized by two different methods: homogeneous precipitation and polymeric precursors. For each method were assessed the conditions of synthesis for the generation of nanoparticles. In homogeneous precipitation method the generation of solid was studied in terms of precipitating agent (ammonium carbonate and/or urea) and calcination temperature of 450°C and 600ºC. In the polymeric precursor method, was studied the action of the esterificant agent (ethylene glycol and glycerol) and calcination temperature of 450°C and 600ºC. The materials were characterized by techniques of XRD, TG/DTA, FTIR, N2-adsorption and TEM. An experimental design was performed using the Lorentz role representing the region of correlation for verification of effect of experimental conditions in the preparation of nanocrystals. Results show that variations in the synthesis results evaluated by each method do not significantly alter the generation of nanoparticles in the oxide, once both methods were promising for the generation of zirconium oxide nanoparticled in the range 6.1 to 15.9 nm. In general, among the methods employed can be noticed that the Pechini method using glycerol as an esterificant agent suites as a promising route for generation of nanoparticled zirconium oxide with good specific surface area and stabilizing the tetragonal phase.

 


Keywords


Synthesis of zirconia, homogeneous precipitation, polymeric precursors, Pechini method, nanoparticles.

Full Text:

PDF

References


V. R. C. Komandur, R. R. Kondakindi, K. Gurram, J.W. Niemantsverdriet, M. Gerhard, “ Structure and catalytic properties of molybdenum oxide catalysts supported on zirconia,” J. Catal. 2004, 226 283-291.

T. Yamaguchi, “Application of ZrO2 as a catalyst and a catalyst support,” Catal. Today. 1994, 20 199-218.

F.F.Lange, “Powder Processing Science and Technology for Increased Reliability,” J. Am. Ceram. SOC. 1989, 72 [I] 3-15.

S. Banijamali, B. E. Yekta, H.R. Rezaie, V.K. Marghussian, “Crystallization and sintering characteristics of CaO–Al2O3–SiO2 glasses in the presence of TiO2, CaF2 and ZrO2,” Thermochim. Acta. 2009, 488 60-65.

S. Kumar, V. C. Srivastava, R. P. Badoni, “Oxidative desulfurization by chromium promoted sulfated zirconia,” Fuel. Process. Technol. 2012, 93 18-25.

E. Hemmer, K. Soga, T. Konishi, T. Watanabe, T. Taniguchi, S. Mathur, “ Influence of the Host Phase on the Vibrational Spectra of Europium-Doped Zirconia Prepared by Hydrothermal Processing” J. Am. Ceram. Soc. 2010, 93 [11] 3873-3879.

H. You, K. Cho, Y. Yoon, J. Im, D. Shin, “Synthesis of yttria-stabilized zirconia film by Aerosol Flame Pyrolysis Deposition,” J. Anal. Appl. Pyrol. 2008, 81 [1] 14-19.

A. Dittmar, D.L. Hoang, A. Martin, “TPR and XPS characterization of chromia–lanthana–zirconia catalyst prepared by impregnation and microwave plasma enhanced chemical vapour deposition methods,” Thermochim. Acta. 2008, 470 [1-2] 40-46.

G. D. Yadav, N. P. Ajgaonkar, A. Varma, “A Preparation of highly superacidic sulfated zirconia via combustion synthesis and its application in Pechmann condensation of resorcinol with ethyl acetoacetate,” J. Catal. 2012, 292 99-110.

B. Wang, J. Zhu, H. Ma, “Desulfurization from thiophene by SO42-/ZrO2 catalytic oxidation at room temperature and atmospheric pressure,” J. Hazard. Mater. 2009, 164 256-264.

S. Djerad, B. Geiger, F.J.P. Schott, S. Kureti, “Synthesis of nano-sized ZrO2 and its use as catalyst support in SCR,” Catal. Commun. 2009, 10 1103-1106.

G.K. Chuah, S. Jaenicke, S. A. Cheong, K. S. Chan, “The influence of preparation conditions on the surface area of zirconia,” Appl. Catal. A-Gen., 145 267-284 (1996).

C.F. Virgens, M. C. Rangel, “Influence of The Preparation Method on the Textural Properties of Zirconia,” React Kinet Catal let. 2004, 84 [1] 183-188.

R. C. Garvie, M. F. Goss, “Intrinsic size dependence of the phase transformation temperature in zirconia microcrystals,” J. Mater. Sci. 1986, 21 1253-1257.

M. W. Pitcher,S. V. Ushakov, A. Navrotsky, B. F. Woodfield, Guangshe Li, J. B. Goates, B. M. Tissue, “Energy Crossovers in Nanocrystalline Zirconia,” J. Amer. Ceram.Soc. 2005, 88 160-167.

K. Matsui, M. Ohgai, “Formation Mechanism of Hydrous Zirconia Particles Produced by the Hydrolysis of ZrOCl2 Solutions: III, Kinetics Study for the Nucleation and Crystal-Growth Processes of Primary Particles” J. Am. Ceram. Soc. 2001, 84 [10] 2303–12

A. J. G . Zarbin, “Química de (nano)materiais,” Quim. Nova. 2007, 30 [6] 1469-1479.

A. Bianco, M. Viticoli, G. Gusmano, M. Paci, G. Padeletti, P. Scardi, “Zirconium Tin Titanate Thin Films Via Aqueous Polymeric Precursor Route,” Mater. Sci. Eng. 2001, 15 [1-2] 211–213.

D. A. S SILVA,Mastery Thesis, Universidade do Estado da Bahia, 2009.

G.L.J.P Silva, M.L.C.P, Silva, T. Caetano, “Preparation and Characterization of Hydrous Zirconium Oxide Formed by Homogeneous Precipitation,” Mat. Res. 2002, 5 [2] 149-153.

S. Britto, S. Joseph, P. V. Kamath, “Distinguishing crystallite size effects from those of structural disorder on the powder X-ray diffraction patterns of layered materials,” J. Chem. Sci. 2010, Vol. 122, No. 5 751–756.

K. M. Mishra, T. Beena, R. V. Jasra, “Synthesis and characterization of nano-crystalline sulfated zirconia by sol–gel method,” J. Mol. Catal. A-Chem. 2004, 223 61–65.

K. N. Yu, Y. Xiong, Y. Liu, C. Xiong, “Micro-structural change of nano-SnO2 grain assemblages with the annealing temperature,” Phys. Rev. B. 1997, 55 [4] 2666-2671.

P. J. B. Marcos, D. Gouvêa, “Efeito da segregação e olubilização do MgO na morfologia de pós de ZrO2 durante a síntese pelo método Pechini,” Cerâmica. 2004, 50 38-42.

W.S. Dong, K. W. Jun, H. S. Roh, Z. W. Liu, S. E. Park, “Comparative study of partial oxidation of methane over Ni/ZrO2 e Ni/CeO2 and Ni/Ce-ZrO2 catalysts,” Catal. Lett. 2002, 78 215-222.

S. K. Poznyak; A. L. Golubev, A.I Kulak; “Correlation between surface properties and photocatalytic and photoelectrochemical activity of In2O3 nanocrystalline films and powders,” Surf. Sci. 2000, 454-456.

R. E. Santos; Mastery Thesis, Universidade Estadual de Campinas, Faculdade de Engenharia Elétrica e Computação, 2003.

R. Ramamoorthy, D. Sundararaman, S. Ramasamy,“ X-ray Diffraction Study of Phase Transformation in Hydrolyzed Zirconia Nanoparticles,” J. Eur. Ceram. Soc. 1999, 19 1827-1833.

J.L. Figeredo, F.R. Ribeiro, in Catálise Heterogénea, , Fundação Calouste Gulbenkian, Lisboa 1987,pp

P. J. B. Marcos, D. Gouvêa, “Efeito da segregação e olubilização do MgO na morfologia de pós de ZrO2 durante a síntese pelo método Pechini,” Cerâmica. 2004, 50 38-42.

W.S. Dong, K. W. Jun, H. S. Roh, Z. W. Liu, S. E. Park, “Comparative study of partial oxidation of methane over Ni/ZrO2 e Ni/CeO2 and Ni/Ce-ZrO2 catalysts,” Catal. Lett. 2002, 78 215-222.

S. K. Poznyak; A. L. Golubev, A.I Kulak; “Correlation between surface properties and photocatalytic and photoelectrochemical activity of In2O3 nanocrystalline films and powders,” Surf. Sci. 2000, 454-456.

R. E. Santos; Mastery Thesis, Universidade Estadual de Campinas, Faculdade de Engenharia Elétrica e Computação, 2003.

R. Ramamoorthy, D. Sundararaman, S. Ramasamy,“ X-ray Diffraction Study of Phase Transformation in Hydrolyzed Zirconia Nanoparticles,” J. Eur. Ceram. Soc. 1999, 19 1827-1833.

J.L. Figeredo, F.R. Ribeiro, in Catálise Heterogénea, , Fundação Calouste Gulbenkian, Lisboa 1987,pp 92-102.




DOI: https://doi.org/10.34117/bjdv5n6-131

Refbacks

  • There are currently no refbacks.