Low power and short time under ultrasonic effect increase the inulinase activity / Baixa potência e pouco tempo sob efeito ultra-sônico aumentam a atividade da inulinase

Fábio Spitza Stefanski, Thamarys Scapini, Aline Frumi Camargo, Jessica Zanivan, Karina Paula Preczeski, Gislaine Fongaro, Helen Treichel

Abstract


 

A produção de frutose e frutooligossacarídeos é de extrema importância industrial, uma vez que contemplam um seleto grupo de alimentos funcionais, sendo obtidos pela ação catalítica das inulinases. Os tratamentos ultrassônicos (TUS) têm sido amplamente utilizados em reações enzimáticas em váriasárea, com o objetivo de melhorar a eficiência catalítica de enzimas, reduzir o tempo e o custo do processo. Nesse sentido, novas metodologias aplicadas para aumentar a atividade da inulinase apresentam alto potencial biotecnológico. O presente estudo investigou o efeito dos TUS, usando uma sonda de ultrassom em três diferentes processos: tratamento enzimático, pré-tratamento do substrato (inulina e sacarose) e sinergismo entre enzima e substrato. Das condições estudadas, o uso de 220 W por 2 minutos promoveu aumento da atividade enzimática em 843%,usando a sacarose como substrato. Quando maiores potências e tempos foram testados, a enzima não melhorou sua atividade, pois isso pode ter afetado sua integridade estrutural. Assim, conclui-se que o uso de tratamentos ultrassônicos em baixas potências e curtos períodos de tempo, apresentam potencial promissor e simples para fins industriais e farmacêuticos.


Keywords


Enzima; Inulina; Substrato; Sacarose; Tratamento combinado

References


Aghajanzadeh, S., Ziaiifar, A. M., Kashaninejad, M., Maghsoudlou, Y., Esmailzadeh, E. (2016). Thermal inactivation kinetic of pectin methylesterase and cloud stability in sour orange juice. Journal of Food Engineering, v.185, p.72-77.

Barton, S., Bullock, C., Weir, D. (1996). The effects of ultrasound on the activities of some glycosidase enzymes of industrial importance. Enzyme and Microbial Technology, v.18, p.190-194.

Bashari, M., Jin, Z., Wang, J., Zhan X. (2016). A novel technique to improve the biodegradation efficiency of dextranase enzyme using the synergistic effects of ultrasound combined with microwave shock. Innovattive Food Science & Emerging Technologies, v.35, p.125-132.

Cheng, Y., Liu, Y., Wu, J., OforiDonkor, P., Li, T., Ma, H. (2017). Improving the enzymolysis efficiency of potato protein by simultaneous dual-frequency energy-gathered ultrasound pretreatment: thermodynamics and kinetics. UltrasonicsSonochemistry, v. 37, p. 351–359.

Davolli, P., Mierau, V., Weber, R. W. S. (2004). Carotenoids and fatty acids in red yeasts Sporobolomycesroseus and Rhodotorulaglutinis. Applied Biochemistry & Microbiology, v.40, p.392-397.

Decker, H., Schweikardt T., Nillius D., Salzbrunn U., Jaenicke E., Tuczek F., (2007). Similar enzyme activation and catalysis in hemocyanins and tyrosinases, Gene, v.398, p.183–191.

Delgado-Povedano, M. M, Luque De Castro, M. D. (2015). A review on enzyme and ultrasound: A controversial but fruitful relationship. AnalyticaChimica Acta, v.889, p.1-21.

Fazlena, H., Norsuraya, S., Nadiah, S.N. (2013). Ultrasonic Assisted Enzymatic Reaction: An Overview on Ultrasonic Mechanism and Stability Activity of the Enzyme. Business Engineering and Industrial Applications Colloquium, IEEE, Langkawi, Malaysia

Huang, G., Chen, S., Dai, C., Sun, L., Sun, W., Tan, Y., Xiong, F., He, R., Ma, H. (2017). Effects of ultrasound on microbial growth and enzyme activity. UltrasonicsSonochemistry, v.37, p.144-149.

Jin, J., Ma, H., Wang, W., Luo, M., Wang, B., Qu, W., He, R., Owusu, J., Li, Y. (2016). Effects and mechanism of ultrasound pretreatment on rapeseed protein enzymolysis. Journal of the Sicence of Food and Agriculture, v. 96, p. 1159–1166.

Kango, N., & Jain, S. C. (2011). Production and Properties of Microbial Inulinases: Recent Advances. Food Biotechnology, v.25, p.165–212. doi:10.1080/08905436.2011.590763.

Klibanov, A. M., Ahen, T. J. (1987). Protein engineering: Thermal stability of proteins. In: Oxender DL, Fox CF, Editors. Alan R. Liss, New York, p.213–218.

Magadum, D. B, &Yadav, G. D. (2018). Fermentative production, purification of inulinase from Aspergillusterreus MTCC 6324 and its application for hydrolysis of sucrose. Biocatalysis and agricultural biotechnology, v.14, p.7-299.

Martins, M., Azoia, N., Silva, C., Cavaco-Paulo, A. (2015). Stabilization of enzymes in micro-emulsions for ultrasound processes. Biochemical Engineering Journal, v.93, p.115-118.

Mawson, M., Gamage, N. S., Terefe, K. (2011). Ultrasound in enzyme activation and inactivation. Feng H., Barbosa-Canovas G., Weiss J. (Eds.), Ultrasound Technologies for Food and Bioprocessing, Springer, p.369-404.

Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, v.31, p.426.

Mulinari, J., Venturin, B., Sbardelotto, M., DallAgnol, A., Scapini, T., Camargo, A.F., Baldissarelli, D.P., Modkovski, T.A., Rossetto, V., Dalla Rosa, C., Reichert Jr, F.W., Golunski, S.M., Vieitez, L., Vargas, G.D.L.P., Dalla Rosa, C., Mossi, A.J., Treichel, H. (2017). Ultrasound-assisted hydrolysis of waste cooking oil catalized by homemade lipases. UltrasonicsSonochemistry, v.35, p.313–318.

Nguyen, T. T. T., Le, V. V. M. (2013). Effects of ultrasound on cellulolytic activity of cellulose complex. International Food Research Journal, v.20, p.557–563.

Özbek, B., Ülgen, K. O. (2000). The stability of enzymes after sonication. Process Biochemistry, v.35, p.1037-1043, 2000.

Price, N. C., Dwek, R. A., Ratcliffe, R. G., Wormald, M. R. (2002). Principles and problems in physical chemistry for biochemists. Oxford University Press3 Eds. 424 pages.

Rokhina, E. V., Lens, P., Virkutyte, J. (2009). Low-frequency ultrasound in biotechnology: state of the art. Trends in Biotechnology, v.27, p.298-306.

Sakakibara, M., Wang D., Takahashi, R., Takahashi, K., Mori, S. (1996). Influence of ultrasound irradiation on hydrolysis of sucrose catalyzed by invertase. Enzyme and Microbial Technology, v.18, p.444-448.

Singh, R. S., Chauhan, K. (2018). Production, purification, characterization and applications of fungal inulinases. Current Biotechnology, v.7, p.242-260.

Szabó, O. E., Csiszár, E. (2013). The effect of low-frequency ultrasound on the activity and efficiency of a commercial cellulase enzyme. Carbohydrate Polymers, v.98, p.1483-1489.

Tao, Y., Sun, D.W. (2015). Enhancement of food processes by ultrasound: a review, Crit. Rev. Food Science & Nutrition, v. 55, p. 570–594.

Tian, M.L., Fang, F., Du, M.Y., Zhang, F.S. (2016). Effects of pulsed electric field (PEF) treatment on enhancing activity and conformation of alpha-amylase. The Protein Journal, v. 35, p.154–162.

Waghmare, G.V., Rathod, V.K., (2016). Ultrasound assisted enzyme catalyzed hydrolysis of waste cooking oil under solvent free condition. UltrasonicsSonochemistry, v. 32, p. 60–67.

Wang, D., Yan, L., Ma, X., Wang, W., Zou, M., Zhong, J., Ding, T., Ye, X., Liu, D. (2018). Ultrasound promotes enzymatic reaction by acting on different targets: Enzymes, substrates and enzymatic reaction systems. International Journal of Biological Macromolecules, v. 119, p. 453-461.

Wang, W., Ma, X., Jiang, P., Hu, L., Zhi, Z., Chen, J., Ding, T., Ye, X., Liu, D. (2016). Characterization of pectin from grapefruit peel: a comparison of ultrasound-assisted and conventional heating extractions. Food Hydrocolloids, v. 61, p. 730–73.

Wang, Z., Lin. X., Li, P., Zhang, J., Wang, S., Ma, H. (2012). Effects of low intensity ultrasound on cellulase pretreatment. Bioresource Technology, v.117, p.222-227.

Yu, Z. L., Zeng, W. C., Lu, X. L., (2013). Influence of ultrasound to the activity of tyrosinase, UltrasonicsSonochemistry, v.20, p.805–809.

Zhu, F. (2015). Impact of ultrasound on structure, physicochemical properties, modifications, and applications of starch. Trends in Food Science and Technology. v.43, p.1-17.


Refbacks

  • There are currently no refbacks.