Evaluation of flood risk in Sorocaba - Brazil, using fuzzy logic and geotechnology / Avaliação do risco de inundação em Sorocaba - Brasil, usando lógica e geotecnologia fuzzy

Elfany Reis do Nascimento Lopes, Jomil Costa Abreu Sales, José Carlos de Souza, Jocy Ana Paixão de Souza, Maria Cintia Matias Morais, Roberto Wagner Lourenço

Abstract


Floods are natural processes capable of destroying cities and lives, causing immeasurable impacts on humanity. The increase in the occurrence of such tragedies is remarkable. Factors interfering with it may be population growth and a fast urbanization. The city of Sorocaba, in São Paulo state, Brazil, is an example of this problem. This study aimed to evaluate the degree of flood risk in urban areas, suggesting an alternative evaluation and a prevention method to decision-making on territorial planning. Therefore, fuzzy logic combined to geotechnology was used for the analysis and identification of areas with a higher degree of relevance to flooding. The evaluated areas have a high risk of flooding during January, but care should be improved for the period between November and March.

 


Keywords


Fuzzy Matrix, Urban planning, GIS.

References


Bradshaw, C.J.A., Sodhi, N.S., Peh, K.S. and Brook, B.W. (2007) ‘Global evidence that deforestation amplifies flood risk and severity in the developing world’, Global Change Biology, 13(11), pp. 2379–2395. doi: 10.1111/j.1365-2486.2007.01446.x.

Calder, I.R. and Aylward, B. (2006) ‘Forests and floods - in support of an evidence-based approach to watershed and integrated flood management’, Water International, 31(4), pp. 544–547. doi: 10.1080/02508060608691957.

CIIAGRO - Centro Integrado de Informações Agrometereológicas (2015). Série histórica de pluviosidade mensal de Sorocaba – SP. Available at: http://www.ciiagro.sp.gov.br/ciiagroonline/Quadros/QChuvaPeriodo.asp/(Accessed: 3: 21 jun. 2015).

Chen, S.-M. and Wang, J.-Y. (1995) ‘Document retrieval using knowledge-based fuzzy information retrieval techniques’, IEEE Transactions on Systems, Man, and Cybernetics, 25(5), pp. 793–803. doi: 10.1109/21.376492.

Chen, S.-M., Horng, Y.-J. and Lee, C.-H. (2003) ‘Fuzzy information retrieval based on multi-relationship fuzzy concept networks’, Fuzzy Sets and Systems, 140(1), pp. 183–205. doi: 10.1016/s0165-0114(02)00464-5.

Crepani, E. Medeiros, J.S., Hernandez Filho, P., Florenzano, T.G., Duarte, V. and Clemente Faria Barbosa, C. (2001), Sensoriamento Remoto e Geoprocessamento aplicados ao zoneamento ecológico econômico e ao ordenamento territorial. São José dos Campos: INPE.

IBGE - Instituto Brasileiro de Geografia e Estatísticas (2013). Sorocaba. Dados gerais. Available at: http://cod.ibge.gov.br/2351E/ (Accessed: 21 jun. 2015).

INPE - Instituto Nacional de Pesquisas Espaciais (2015) -. TOPODATA: Banco de dados geomorfométrico do Brasil. Available at: http://www.dsr.inpe.br/topodata/ (Accessed: 21 jun. 2015).

Köppen, W. (1936) ‘Das geographische system der climate’, in: Köppen, W.; Geiger, R. (Eds.). Handbuch der Klimatologie 1936. Berlin: Gebrüder Borntraeger, pp.32- 44.

Lohani, A.K., Kumar, R. and Singh, R.D. (2012) ‘Hydrological time series modeling: A comparison between adaptive neuro-fuzzy, neural network and autoregressive techniques’, Journal of Hydrology, 442-443, pp. 23–35. doi: 10.1016/j.jhydrol.2012.03.031.

Monteiro, A. (2009) ‘As cidades e a precipitação. Uma relação demasiada briguenta’, Revista Brasileira de Climatologia, 5(5), pp. 7–25.

Morita, M. (2014) ‘Flood risk impact factor for comparatively evaluating the main causes that contribute to flood risk in urban drainage areas’, Water, 6(2), pp. 253–270. doi: 10.3390/w6020253.

Murdukhayeva, A., August, P., Bradley, M., LaBash, C. and Shaw, N. (2013) ‘Assessment of Inundation risk from sea level rise and storm surge in northeastern coastal national parks’, Journal of Coastal Research, 291, pp. 1–16. doi: 10.2112/jcoastres-d-12-00196.1.

Neal, J., Schumann, G., Fewtrell, T., Budimir, M., Bates, P. and Mason, D. (2011) ‘Evaluating a new LISFLOOD-FP formulation with data from the summer 2007 floods in Tewkesbury, UK’, Journal of Flood Risk Management, 4(2), pp. 88–95. doi: 10.1111/j.1753-318x.2011.01093.x.

Oliveira, J.B., Camargo, M.N., Rossi, M. and Caldeira Filho, B. (1999). Mapa pedológico do Estado de São Paulo: Legenda expandida. Campinas: Instituto Agronômico/EMBRAPA.

Paix, M.J., Lanhai, L., Xi, C., Ahmed, S. and Varenyam, A. (2011) ‘Soil Degradation and Altered Flood Risk as a Consequence of Deforestation’, Land Degradation & Development, 24, pp. 478–485. doi: 10.1002/ldr.1147.

Pall, P., Aina, T., Stone, D.A., Stott, P.A., Nozawa, T., Hilberts, A.G.J., Lohmann, D. and Allen, M.R. (2011) ‘Anthropogenic greenhouse gas contribution to flood risk in England and wales in autumn 2000’. Nature, 470(7334), pp. 382–385. doi: 10.1038/nature09762.

Perre, M.A., Romero, R.H.C. and Borges, T.H.N. (1986) ‘Relações e restrições fuzzy’, Semina: Ciências Exatas e Tecnológicas, 7(2), pp. 93–99. doi: 10.5433/1679-0375.1986v7n2p93.

Quan, R. (2014) ‘Risk assessment of flood disaster in Shanghai based on spatial–temporal characteristics analysis from 251 to 2000’, Environmental Earth Sciences, 72(11), pp. 4627–4638. doi: 10.1007/s12665-014-3360-0.

Ravazzani, G., Gianoli, P., Meucci, S. and Mancini, M. (2014) ‘Assessing downstream impacts of detention basins in urbanized river basins using a distributed Hydrological model’, Water Resources Management, 28(4), pp. 1033–1044. doi: 10.1007/s11269-014-0532-3.

Righi, E. and Robaina, L.E. de S. (2012) ‘Risco à inundação no médio Curso Do Rio Uruguai: Estudo De Caso No Município de São Borja - RS’, Revista Brasileira de Geomorfologia, 13(3). doi: 10.20502/rbg.v13i3.198.

Ross, J.L.S. (1994) ‘Análise Empírica da Fragilidade dos Ambientes Naturais Antropizados’, Revista do Departamento de Geografia, (8), pp. 63–74. doi: 10.7154/rdg.1994.0008.0006.

Ross, T.J. (2004) Fuzzy logic with engineering applications. 2nd edn. Chichester, United Kingdom: John Wiley & Sons.

Tsakiris, G. (2014) ‘Flood risk assessment: Concepts, modelling, applications’, Natural Hazards and Earth System Science, 14(5), pp. 1361–1369. doi: 10.5194/nhess-14-1361-2014.

Wang, L.-N., Chen, X.-H., Shao, Q.-X. and Li, Y. (2015) ‘Flood indicators and their clustering features in Wujiang river, south china’, Ecological Engineering, 76, pp. 66–74. doi: 10.1016/j.ecoleng.2014.03.018.

Yin, J., Yu, D., Yin, Z., Wang, J. and Xu, S. (2013) ‘Modelling the combined impacts of sea-level rise and land subsidence on storm tides induced flooding of the Huangpu river in Shanghai, china’, Climatic Change, 119(3-4), pp. 919–932. doi: 10.1007/s10584-013-0749-9.

Zadeh, L.A. (1965) ‘Fuzzy sets’, Information and Control, 8(3), pp. 338–353. doi: 10.1016/s0019-9958(65)90241-x.

Zhang, J., Zhou, C., Xu, K. and Watanabe, M. (2002) ‘Flood disaster monitoring and evaluation in china’, Environmental Hazards, 4(2), pp. 33–43. doi: 10.3763/ehaz.2002.0404.

Zou, Q., Zhou, J., Zhou, C., Song, L. and Guo, J. (2013) ‘Comprehensive flood risk assessment based on set pair analysis-variable fuzzy sets model and fuzzy AHP’, Stochastic Environmental Research and Risk Assessment, 27(2), pp. 525–546. doi: 10.1007/s00477-012-0598-5.


Refbacks

  • There are currently no refbacks.