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ABSTRACT 

Quinoa (Chenopodium quinoa Willd) is a pseudocereal native to the Andean regions of South 

America. If compared with most cereals, quinoa seeds have a higher nutritional value (Matiacevich 

et al., 2006) with a protein content that ranges between 12% and 23% (Abugoch et al., 2008; Ando 

et al., 2002; Jancurová et al., 2009; Koziol, 1992; Ruales and Nair, 1992). The objective of this study 

was to optimize cooking with saturated steam and high temperature dehydration of quinoa 

(Chenopodium quinoa). The multiple response surface optimization methodology was applied with 

independent variables (saturated vapor pressure and cooking time) and as a response variable 

(gelatinization, water adsorption index and cotyledon detachment). A vertical cooker with steam 

generator was used (Item: HL-340, Serial No. 806727, Gemmy Industrial Corp. U.S.A.). The results 

and conclusion of cooking were: The results of cooking and dehydration, are due to the behavior of 

starch due to the effect of saturated steam pressure and cooking process time. In gelatinization the 
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internal starch hydrogen bonds are replaced by starch-water bonds (Pardhi et al., 2016), it is an 

irreversible process, it consists of granular swelling, native crystalline fusion, birefringence loss and 

starch solubilization (Ji et al., 2017). The solubility index indicates the degree of association 

(intragranular bonds) between starch polymers (amylose and amylopectin) (Araujo et al., 2004). The 

optimum cooking values were, vapor pressure was 1,55 kgf cm-2, time of 10 minutes and dehydration 

temperature 82 ° C, gave good results in keeping the whole grain of instant quinoa with a 

gelatinization of starch in 93,82% and a 2,54 minutes rehydration. 

 

Keywords: Chenopodium quinoa Willd, steam pressure cooking, high temperature dehydration. 

 

RESUMO 

A quinoa (Chenopodium quinoa Willd) é um nativo pseudocereal das regiões andinas da América do 

Sul. Se comparadas à maioria dos cereais, as sementes de quinoa têm um valor nutricional mais alto 

(Matiacevich et al., 2006), com um teor de proteína que varia entre 12% e 23% (Abugoch et al., 2008; 

Ando et al., 2002; Jancurová et al., 2009; Koziol, 1992; Ruales e Nair, 1992). O objetivo deste estudo 

foi otimizar o cozimento com vapor saturado e desidratação a alta temperatura da quinoa 

(Chenopodium quinoa). A metodologia de otimização da superfície de resposta múltipla foi aplicada 

com variáveis independentes (pressão de vapor saturado e tempo de cozimento) e como variável de 

resposta (gelatinização, índice de adsorção de água e descolamento de cotilédones). Foi utilizado um 

fogão vertical com gerador de vapor (Item: HL-340, Nº de série 806727, Gemmy Industrial Corp. 

EUA). Os resultados e conclusão do cozimento foram: Os resultados do cozimento e desidratação, 

são devidos ao comportamento do amido devido ao efeito da pressão do vapor saturado e do tempo 

do processo de cozimento. Na gelatinização, as ligações internas de hidrogênio do amido são 

substituídas por ligações amido-água (Pardhi et al., 2016), é um processo irreversível, consiste em 

edema granular, fusão cristalina nativa, perda de birrefringência e solubilização do amido (Ji et al., 

2017). O índice de solubilidade indica o grau de associação (ligações intragranulares) entre polímeros 

de amido (amilose e amilopectina) (Araujo et al., 2004). Os valores ótimos de cozimento foram: 

pressão de vapor de 1,55 kgf cm-2, tempo de 10 minutos e temperatura de desidratação de 82 ° C, 

proporcionaram bons resultados na manutenção de todo o grão de quinoa instantânea com uma 

gelatinização de amido em 93,82% e uma reidratação de 2,54 minutos. 

 

Palavras-chave: Quinoa Chenopodium Willd, cozimento sob pressão a vapor, desidratação a alta 

temperatura. 

 

1 INTRODUCTION 

Quinoa (Chenopodium quinoa Willd.) Is a pseudocereal traditionally consumed by Andean 

cultures that is attracting worldwide attention as a functional food. Because of its high content of 

proteins, lipids, fiber, vitamins and minerals, and its excellent balance of essential amino acids, it has 

been found that quinoa contains numerous phytochemicals that include saponins, phytosterols, 

phytoecteresteroids, phenolic compounds and bioactive peptides. These compounds can have 

beneficial effects on metabolic, cardiovascular and gastrointestinal health (Vilcacundo & Hernández-

Ledesma, 2017). It is an important source of minerals and vitamins, and it has also been found to 

contain compounds such as polyphenols, phytosterols and flavonoids with possible nutraceutical 

benefits (Abugoch James, 2009). 
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Compared to most quinoa seed cereals, they have a higher nutritional value that is relatively 

rich in protein, with a content that ranges between 12% and 23%. 11S globulin and 2S albumin are 

the largest fraction of quinoa proteins, representing approximately 37% and 35% of the total grain 

protein, respectively. The molar mass of 2S albumin is 8-9 kDa, 11S globulin is 22-23 kDa, for the 

basic subunit of 32-39 kDa and for the acid subunit (Kaspchak et al., 2017). 

Leite et al. (2017), developed the research “High pressure processing (HPP) of pea starch: 

Effect on gelatinization properties”. (Mota et al., 2016) investigated the effect of cooking methods 

on the mineral content of quinoa (Chenopodium quinoa), amaranth (Amaranthus sp.) And buckwheat 

(Fagopyrum esculentum), concluded that steam cooking demonstrated be more appropriate than 

boiling with respect to all foods under study. 

The response surface methodology (RSM) is a statistical procedure commonly applied for 

optimization studies in general and especially in food processing (Mestry et al., 2011; Pérez-

Francisco et al.,2008). 

The response surface methodology (RSM) as a statistical method optimizes the dependent 

variable. Each response (dependent variable) is affected by different independent variables (control 

factors). In addition, RSM is powerful in defining the correlation between the response variables and 

the independent variables (Kaur et al., 2009; Kumar et al., 2014). Each response variable in RSM has 

a mathematical relationship with the experimental parameters through a non-linear polynomial 

equation with square terms, two-factor interaction terms, linear terms and a constant term. This 

equation can be expressed as (Montgomery, 2017): 
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Where "Yi" are the response variables. βo, βi, βij where i = j, and βij where i ≠ j are the 

coefficients to intercept, linear, quadratic and interactive effects respectively. In this study, ec. (1) It 

is organized by the RSM quadratic model and is a mathematical relationship between the control 

factors. A quadratic model is useful to approximate the true response surface with a parabolic 

curvature. The quadratic model has a set of all terms in the first order model, plus all second order 

terms and all cross-product terms. In addition, the quadratic model is a flexible model, since it 

employs a variety of functional forms and determines the response surface locally. Consequently, this 

is an excellent model to assess the true response surface (Majdi et al., 2019). 

Multiple responses can be estimated through the desirability function (D (x)) (Derringer, 

1980; Giri and Prasad, 2007; Myers et al., 2016) by applying the equation (2). 

𝐷(𝑥) = (𝑌1 ∗ 𝑌2, 𝑌3, … . 𝑌𝑛)
1/𝑛       (2) 



Brazilian Journal of Development 
 

      Braz. J. of Develop., Curitiba, v. 6, n. 2, p. 6170-6190, feb. 2020.    ISSN 2525-8761 

6173  

where Yi (i = 1, 2 ... n) are the dependent variables and "n" is the total number of responses evaluated. 

The value of "D" varies from zero to one. "D" is the desirability function that represents the way in 

which the dependent variables are at a selected level of independent variables. The method consists 

in obtaining a function that converts a multiple response problem into a single response (Martinez 

Delfa, Olivieri, & Boschetti, 2009). A high value of D (x) indicates the best combinations of factors, 

which is considered the optimal system solution. The optimal values for each factor are determined 

from the values of the individual convenience functions that maximize the global function D (x) 

(Corzo & Gomez, 2004). 

Quinoa grains are composed of a single seed enclosed by an outer pericarp. Quinoa seed 

contains a central perisperm where carbohydrate stores are located, surrounded by the lipid-rich and 

protein-rich embryo, the endosperm and the seed layer, the quinoa pericarp is rich in bitter saponins 

(Graf et al., 2015). During the immersion cooking of quinoa in water, problems of excessive 

detachment of the cotyledon from the grain are generated and as a consequence of this release of the 

starch, as a consequence of this during the dehydration a problem is also generated such as the excess 

of drying time, rehydration prolonged To keep the grains cooked and whole, it proposes as an 

alternative a technology of pressure cooking of saturated steam and high temperature dehydration. 

As a study objective, the optimization of high temperature cooking and dehydration of quinoa 

(Chenopodium quinoa Willd) variety Ayrampo Negra is proposed. 

 

2 MATERIALS AND METHODS 

2.1 MATERIAL 

The samples used in this investigation were whole grains of quinoa (Chenopodium quinoa 

Willd) Ayrampo black variety. All were harvested in the region of Ayacucho-Peru. The moisture 

content was determined in triplicate using method 925.10, as described by (AOAC, 1990). 

2.2 METHODOLOGICAL COOKING PROCEDURE 

For cooking the quinoa previously, it was soaked for 24 hours and then washed with water 

from the net to remove the bitter taste and saponins and then drained into a mesh. The cooking was 

done in a vertical cooker with steam generator (Vertical Type Sterilizer, Item: HL-340, Serial No. 

806727, Gemmy Industrial Corp. USA) was programmed with the addition of 2 liters of distilled 

water for steam generation , the pressure and cooking time according to the experimental design 

proposed, the response surface methodology, the central composite design was used, as shown in 

Table 1. The samples were placed in a stainless-steel basket in an amount of 250 g, then they were 

cooked. The conditions of the convection air dehydrator were, the relative humidity measured was 

12 ± 2.0%, dry bulb temperature 90 ° C, incorporated with a digital balance with an accuracy of ± 
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0.01 g., Connected to a personal computer that records the weight loss at intervals of 10 seconds, 

until reaching a constant weight. 

 

Table 1 

Level of control factors 

Control variables Unit Symbol 
Minimum 

level 

Medium 

level 

Maximum 

level 

Cooking steam 

pressure 
kgf cm-2 P 1 1,5 2 

Cooking time min t 2 6 10 

 

2.3 METHODOLOGICAL COOKING-DEHYDRATION PROCEDURE 

Once the cooking was done, the product was immediately removed from the cooker (T = 100 

° C), placed in stainless steel fine mesh trays and placed inside the air dryer by preconditioning 

conditioned its temperature and speed control system air. In the dryer the samples were placed in a 

stainless-steel fine mesh base tray that hangs on a digital scale with an accuracy of ± 0,01 g. Digital 

balance connected to a personal computer that records weight loss at 10 second intervals, until a 

constant weight is reached. The tests were carried out according to the design proposed in Table 2. 

Pressure values of 1 to 2 kgf cm-2, these values were assigned based on preliminary tests, the values 

of 60 and 100 ° C chosen for the Dehydration temperature were chosen based on the outlet 

temperature after the opening of the cooker and the minimum temperature based on the temperature 

of possible cooling during handling. The relative humidity of the air was measured digitally by a 

humidity sensor (Traceable # Grainger: 3LYW2, Mexico) that was located in the dryer cabin. Under 

drying conditions, the measured relative humidity was 12 ± 2,0 %, dry bulb temperature 90 ° C, at an 

altitude of 2761 m.a.s.l. The initial moisture content of cooked quinoa was 83,3 % on a wet basis 

(w.b.) determined by the stove method at atmospheric pressure at 105 ° C for 24 h (Helrick, 1990). 

Dehydration of the samples continued until their equilibrium moisture content was reached in each 

test condition. The equilibrium moisture content (0,136 g of water / g of dry matter on dry basis) was 

determined through the interpolation of Newton's finite differences of numerical methods using the 

adsorption isotherm model of Guggenheim-Anderson-de Boer a the drying temperature (70 - 90 ° C), 

similar to that used by (Golestani et al., 2013). 
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Table 2 

Level of control factors 

Control variables Unit Symbol Minimum level 
Medium 

level 
Maximum level 

Cooking steam 

pressure 
kgf cm-2 P 1 1,5 2 

Dehydrated 

temperature 
°C T 60 80 100 

 

2.4 STATISTICAL EVALUATION 

To evaluate the influence of the variables in the research, the response surface methodology, 

of the central composite design factorial design at a level of significance of α = 0,05 was used. To 

assess the correlation of multiple responses, the desirability function of the response surface 

methodology was used. 

 

2.5 ANALYSIS OF RESPONSE VARIABLES 

The response variables that were analyzed were: 

Water absorption index (IAA) and water solubility index (ISA) (Jafari et al., 2017): The 

IAA and ISA were determined according to the method developed by (Pardhi et al., 2016). 

Degree of starch gelatinization: A spectophotometric method used by (Birch & Priestley, 

1973), based on the formation of the amylose-iodine complex. 

Cotyledon detachment (%): It was determined by percentage of grains with cotyledons 

completely detached as a result of cooking. 

Rehydration: For rehydration the methodology used by (Jiao et al., 2014) was used. 

 

3 RESULTS AND DISCUSSIONS 

3.1 COOKING 

Figure 1 shows the 3D response graphs obtained from the results of maximization of water 

absorption index, minimization of cotyledon shedding and maximization of gelatinization during 

cooking of Ayrampo variety black quinoa. 

The correlation coefficients of the polynomial adjustment was evaluated through the analysis 

of variance (ANVA) as observed in Table 2, the results show a significance of p-value less than the 

alpha value (5%) or a 95% confidence level , confirms the existence of the correlation of the 
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dependent variables with the independent ones according to the stated objective. In addition, 

observing the results of the coefficients presents a statistical model of quadratic type with 6 

coefficients for each response consisting of: water absorption index, release of cotyledon and 

gelatinization of cooked quinoa starch as a function of cooking vapor pressure (X1) and cooking time 

(X2). 

 

Figure 1. Response surface of: A-Maximization of water absorption index; B- minimization of cotyledon 

shedding; C- Maximization of gelatinization, during the cooking of quinoa with saturated steam. 

 

Table 3 

Analysis of the variance of the polynomial predictive models for the responses during cooking during 

Ayrampo black quinoa. 

Factors 
 

Water absorption index 

(g / g) 

Detached cotyledons 

(%) 
Gelatinization (%) 

 coefficient p-value coefficient p-value coefficient p-value 

Constant β0 -1,40656  37,1239  0,576562  

x1(Pressure) β1 7,27917 0,0002 - 19,4092 0,0007 63,2983 0,0001 
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x2(Time) β2 0,619896 0,0002 0,345729 0,0002 2,29698 0,0000 

x1
2 β11 - 1,445 0,0450 8,175 0,0066 - 18,575 0,0022 

x2
2 β22 - 0,005703 0,5473 0,04711 0,1848 0,05789 0,3492 

x1x2 β12 - 0,24125 0,0062 - 0,14875 0,4962 0,71 0,1053 

R2 

 

0,9611 3,7e-04 0,9569 5,0e-04 0,9929 2,36e-06 

 

The p-value of the model less than 0,05, which indicates that the terms of the model are 

significant. In this case, pressure, time and pressure 2 are significant terms of the model. P values 

greater than 0,05 indicate that the terms of the model are not significant. In this case, time 2 and 

pressure * time are insignificant model terms. The mathematical model obtained was quadratic 

obtained from the regression analysis for the dependent variables in terms of the independent 

variables as shown in Fig. 1A, B and C respectively and is expressed through the following equations 

3-5: 

 

IIA = -1,40656 + 7,27917* Pressure + 0,619896*Time - 1,445* Pressure^2 - 0,24125* 

Pressure *Time - 0,00570313*Time^2                                                          (3) 

Gelatinization = 0,576562 + 63,2983* Pressure + 2,29698*Time - 18,575* Pressure ^2 + 

0,71* Pressure *Time + 0,0578906*Time^2                                       (4) 

Cotyledon Detachment = 37,1239 - 19,4092* Pressure + 0,345729*Time + 8,175* Pressure 

^2 - 0,14875* Pressure *Time + 0,0471094*Time^2                    (5) 

 

Optimization analysis of steam pressure cooking 

From the results of Fig. 1 A, B and C, the optimization of multiple responses was estimated 

through the desirability function (D (x)) (Derringer, 1980; Giri and Prasad, 2007; Myers et al ., 2009), 

for cooking Ayrampo black variety quinoa, according to the following criteria of: maximizing the 

water absorption rate (g / g), minimizing the release of cotyledons (%) and maximizing gelatinization 

(% ), which were also applied in other foods by, Ahmed, Qazi, and Jamal (2016), (Corzo, Bracho, 

Vásquez, & Pereira, 2008; Corzo & Gomez, 2004), as we can see the results in Table 3 and Fig. 2 

respectively. 
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Table 4 

Optimum operating conditions for pressure cooking of quinoa vapor black variety ayrampo. 

Product 

Optimal conditions Optimized Answers 

DT max 
Pressure 

(kgf cm-2) 
Time (min) IAA(g/g) 

Detached 

cotyledons 

(%) 

Gelatinization 

(%) 

Objective - - Max. Min. Max.  

Quinoa 1,550 10 8,2954 32,5412 93,8261 0,8414 

 

During cooking the physical changes suffered by quinoa grains are the shedding of 

cotyledons. The morphological structure of quinoa grain is; the pericarp, episperm (front), perisperm 

and embryo (radicle and cotyledons). The perisperm is the white tissue, composed mainly of starch 

and occupies a space of 60% of the total grain. Then it is composed of cotyledon in approximately 

35%, endosperm in 5% and pericarp where it occupies almost 90% saponin (Arendt & Zannini, 2013). 

During cooking the starch absorbs water, increases its volume due to the increase in water content 

and then due to the osmotic pressure generated the structure tends to break and finally the cotyledons 

tend to be released. When the starch is heated in the presence of water, an irreversible process called 

gelatinization is carried out in which a series of internal starch hydrogen bonds are replaced by starch-

water bonds (Pardhi et al., 2016). 
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Figure 2. Total convenience function in cooking optimization of black quinoa ayrampo with saturated steam. 

 

The region of the optimum value of the convenience function (Dx), can be seen as a narrow 

slope at the maximum pressure level (1,55 kgf cm-2), and 10 minutes. The optimum processing 

condition for quinoa cooking was obtained according to the mathematical solutions of the total 

convenience function considering the optimization criteria (Table 4). The solution for the optimal 

condition that maximizes the value of the total convenience function was 0,8414. The correlation of 

the cooking parameters, through maximization of water absorption index, minimization of detached 

cotyledons and maximization of starch gelatinization, as indicators of cooking quinoa are: Pressure 

= 1,55 kgf cm-2) and Time = 10 min to reach optimum cooking measured with the cooking indicators, 

through quantification of water absorption index = 8,2954 (g / g), detached cotyledons = 32,5412 (%) 

and gelatinization = 93,8261%. 

These behaviors of the grains and their components during cooking are due to the variables 

involved in the process such as temperature, pressure and time. Pressure plays an important role 

during the process, as Ji et al. (2017), that the pressure, without shearing effort, could delay the 

gelatinization process due to a weak swelling of the starch granules, a very weak gel and a smaller 

amount of amylose released, in some cases it is not released and the starch granules tend to retain 

their shape 
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Quinoa starch has low gelatinization temperatures (59,2 ° C) (Li & Zhu, 2017a). The starch 

in quinoa is stored as discrete semicrystalline granules and consists of two main biopolymers: linear 

amylose (20-30 %) and highly branched amylopectin (70-80%) (Zhao et al., 2015). The amylose 

content and starch amylopectin structure strongly influence its physicochemical properties and 

applications Chen et al. (2017). Starch gelatinization is an irreversible process, it consists of granular 

swelling, native crystalline fusion, loss of birefringence and solubilization of starch (Ji et al., 2017). 

The solubility of starch is a consequence of water absorption, followed by the swelling of the granule 

and the increase in temperature. The solubility index indicates the degree of association (intragranular 

bonds) between starch polymers (amylose and amylopectin) (Araujo, Alicia, & Padilla, 2004). 

3.2 COOKING - DEHYDRATION 

Fig. 3A, B and C show the 3D response graphs obtained from the results of the maximization 

of whole grains, minimization of rehydration time and maximization of the water solubility index, 

during the cooking-dehydration of the black quinoa variety Ayrampo 

 

Figure 3. Response surface of: A- maximization of whole grains; B-Minimization of rehydration time; C- 

Maximization of water solubility index (ISA), during cooking-dehydration of quinoa black variety ayrampo. 

 

The analysis of variance was developed to validate the accuracy of the model (Freedman, 

Pisani, & Purves, 2007), to verify the effectiveness of the model. In addition, p-values confirm the 
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model from the statistical point of view. For our case study, the p-value of less than 0,05, the model 

is approved from the statistical point of view. In Table 4, the correlation of the dependent variables 

(whole grains, rehydration and starch water solubility indicator) with the independent variables 

(cooking vapor pressure (X1) and dehydration temperature (X2), according to the objective set. 

 

Table 4 

Analysis of the variance of the polynomial predictive models for the responses during cooking-drying of 

quinoa black variety Ayrampo. 

Factors 
 Whole grains (%) Rehydration (min) 

Water solubility index 

(%) 

 coefficient p-value coefficient p-value coefficient p-value 

Factors β0 -2,975 
 

24,7892 
 

4,2525 
 

X1(Pressure) β1 37,55 0,0016 0,06667 0,0000 3,84167 0,0000 

X2(Temperature) β2 1,9407 0,0034 - 0,31517 0,0000 0,424292 0,0000 

X1
2 β11 - 24,65 0,0074 0,925 0,0335 - 1,775 0,0005 

X2
2 β22 - 0,0166 0,0052 0,0012 0,0012 0,001203 0,0000 

X1X2 β12 0,31425 0,0480 0,0465 0,0005 0,03075 0,0012 

R^2 
 

0,9477 8,84e-04 0,9915 4,001e-06 0,9935 1,82e-06 

p-value <0,05 is significant at α = 0,05. 

The lack of adjustment is not significant at p-value> 0,05. 

 

All the adjusted models presented coefficients of determination close to the unit (R2 ≥ 0,9) 

which indicates that the models satisfactorily explain the variability of the responses; The 

mathematical model was a quadratic model obtained from the regression analysis for the dependent 

variables in terms of the independent variables is expressed through the following equations 6 - 8: 

 

GS = -2,975 + 37,55* Pressure + 1,94071* Temperature - 24,65* Pressure^2 + 0,31425* Pressure * 

Temperature - 0,0165937* Temperature ^2                                (6) 
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RH = 24,7892 - 8,19833* Pressure - 0,315167* Temperature + 0,925* Pressure ^2 + 0,0465* 

Pressure * Temperature + 0,00120312* Temperature ^2                          (7) 

ISA = 4,2525 + 3,84167* Pressure + 0,424292* Temperature - 1,775* Pressure ^2 + 0,03075* 

Pressure * Temperature - 0,00270937* Temperature ^2                 (8) 

 

3.3 ANALYSIS OF COOKING-DEHYDRATION OPTIMIZATION 

The results of the optimization of multiple responses for cooking-dehydration can be seen in 

Table 5 and Fig. 4. The optimal condition that maximizes the value of the total convenience function 

was 0,92. The optimum conditions of the cooking - dehydration process were: cooking pressure 1,5 

kgf cm-2, drying temperature of 82 ° C, and optimized responses maximizing whole grains during 

cooking of 84,10 (%), rehydration minimization of 2,54 (min) and starch solubility index of 26,38 

(%). 

 

Table 5 

Optimum operating conditions for the cooking-dehydration of quinoa black variety ayrampo (Cooking 

pressure and drying temperature) 

Product 

Optimal conditions Optimized Answers DT 

max Pressure 

(kgf cm-2) 
Temperature (°C) 

Whole 

grains (%) 
Rehydration (min) 

ISA (%) 

objective - - Max. Min. Max.  

Quinoa 1,5 82 84,10 2,54 26,38 0,92 

 

Fig. 4 shows the optimization combined with a combined desirability (D = 0,92) of the 

dependent variables according to the following criteria: maximize undamaged grains (%), minimize 

rehydration time (min) and Maximize the water solubility index (%) based on the independent 

variables of cooking pressure (kgf cm-2) and temperature (° C) of dehydration. in order to determine 

optimal cooking-dehydrated areas of quinoa black variety ayrampo 
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Figure 4. Total convenience function of cooking-dehydration optimization, of black quinoa ayrampo variety. 

 

The form shown in Fig. 4, the behavior of pressure and temperature, during the evaluation of 

the response variables such as minimization of damage to the grain, minimization of rehydration and 

maximization of the solubility index of quinoa starch during cooking. Dehydration is due to the 

behavior of the components of quinoa. Structural, physicochemical and biochemical changes induced 

by water removal during drying are often not very reversible (Prothon et al., 2003; Beck et al., 2012); 

Fang and Catchmark, 2014; Žepič et al., 2014). Rehydration is often insufficient to recover the initial 

properties, leading to a general loss of functionality after processing (Fernandes Diniz et al., 2004; 

Fang and Catchmark, 2014). The dry material rehydration process is described as the combination of 

the humidification, subsidence, dispersion and swelling steps (Forny et al., 2011). 

Amylose content has been considered as the most important determinant of cereal food 

quality. In the mid-1990s, it was proposed that the texture of cooked cereal is also related to the fine 

structure of amylopectin (Li et al., 2016). 

During dehydration the intracellular water migrates from the intracellular space to the 

intercellular spaces. Understanding the periods in which cell membranes are broken is crucial, since 

this knowledge can be used to design a more efficient drying system (Khan et al., 2017). 

The decrease in swelling capacity after drying is clearly due to a general contraction of the 

structure of the material. Its final functionality depends largely on its processing history and, in 
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particular, on the structural modifications that occur during drying and rehydration (Déléris & 

Wallecan, 2017). 

Cooked cereals require further studies for knowledge of satisfactory structural quality, 

acceptability and shelf life. However, as an alternative to this technological problem was the study of 

cooking at high steam pressure, high temperature and short time. Wang et al. (2017) show an 

inadequate management of parameters of this dehydration process, leading to a drastic deterioration 

of product quality such as surface hardening, prolonged rehydration, contraction and discoloration of 

the product. 

Andean pseudocereals are consumed after cooking. However, culinary methods can lead to 

considerable losses of soluble nutrients, namely minerals (Barampama & Simard, 1995). The 

differences in structural changes between raw and cooked foods may be greater than 90%. Therefore, 

high pressure steam cooking and high temperature drying treatments can have an impact on the 

knowledge of cooking and dehydrated variables in the significant level of structural changes of 

carbohydrates, and ensure their digestibility of intake of nutrients. 

Quinoa starch has physicochemical properties such as: low gelatinization temperatures (59.2 ° 

C), amylose content (for example, 3-20%), granule size (~ 1.5 μm) (Li & Zhu, 2017a). Quinoa has a 

starch with more than 50% of the dry weight of the seeds. The quality of quinoa products can be 

highly determined by the properties of starch (Li & Zhu, 2017b). Quinoa starch granules are 

polygonal with a diameter of 0.3 - 1.7 μm, presented as single, spherical entities and oblong 

aggregates (10 - 20 μm). Quinoa starch contains 8.4% amylose., Gelatinization temperature 53 to 66 ° 

C (Srichuwong et al., 2017). Carbohydrates are the predominant component in quinoa with 80.45% 

(Encina-Zelada et al., 2017), texture variations during cooking are mainly due to changes in 

carbohydrates. 

The drying problems are diverse since several food materials with very different physical / 

chemical properties need to be dried at different production scales and with very different product 

quality specifications (Musielak et al., 2016). Drying is a well-studied unit operation in process 

engineering, whose main objective is to "dehydrate" a material at faster and faster speeds that 

optimize energy expenditure. Dehydration should be considered not only as a unit operation, but also 

as a powerful method to produce unique food structures even from the same raw material, be it a 

tissue, a liquid dispersion or a dry powder (Aguilera et al., 2003). In this context, food dehydration is 

reviewed from the perspective of recent advances in the science of food materials, knowledge of 

desiccation in nature, microstructural sounding, new processing technologies and deeper knowledge 

about drying mechanisms, among others. The role of the structure in dehydrated products seems 

evident to understand transport mechanisms and to design functional properties (Aguilera et al., 2003) 
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Loss, gain and moisture transfer often affect food materials. Whether derived from the 

interaction with the atmosphere or with another component of the food, such changes always cause a 

deterioration of the general quality of the food through softening, hardening, decomposition, swelling 

or contraction due to phase or dissolution transitions. In most cases, water migration leads to 

organoleptic or microbiological changes in food (Roudaut & Debeaufort, 2011). 

 

3.4 SHELF LIFE  

The values shown in Table 6, the values of form (β) and scale (α) were calculated for the 

values of 40, 50 and 60 ° C respectively from the regression curves of the Weibull accumulated risk 

plot of the attribute Sensory presence of aldehyde formation, the parameters of form (β) and scale (α) 

for 20 ° C were calculated using numerical solutions of interpolation of Lagrange. 

 

Table 6 

Values of the shape and scale parameter for the sensory evaluated in the instantaneous quinoa stored at 

different temperatures at accelerated tests. 

T(°C) α β 

20 36,68 3,68 

40 14,58 3,225 

50 6,98 3,142 

60 1,68 3,067 

 

According to the results shown in Table 7, the useful life is 779 days (approximately 2,2 

years), considering the sensory attribute. 
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Table 7 

Shelf life (days) at different storage temperatures for instant dehydrated quinoa. 

Temperature (°C) Time (days) 

20 799 

40 54 

50 27 

60 12 

 

4 CONCLUSIONS 

The correlation of the variables during cooking and cooking - dehydration has been 

demonstrated. The optimal variables for the evaluation of cooking were: cooking pressure of 1,55 

kgf.cm-2, cooking time of 10 minutes and maximum desirability function (D = 0,8414). The optimal 

variables in the evaluation of cooking-dehydration were: cooking pressure of 1,5 kgf.cm-2 and 

dehydration temperature of 82 ° C, for a maximum desirability function (D = 0,92). The shelf life in 

the environmental conditions of 20 ° C was 799 days. 
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