Sistema digestivo e microbiota segmentar: revisão integrativa / Digestive system and segmental microbiota: integrative review

Réia Sílvia Lemos da Costa e Silva Gomes

Abstract


Introdução: O conhecimento da microbiota intestinal e seus efeitos na fisiologia orgânica são relevantes para a compreensão das alterações patológicas orgânicas. Objetivo: diferenciar uma microbiota de cada área segmentar do tubo digestivo. Método: Trata-se de revisão integrativa de 57 artigos levantados nas plataformas PubMed e SciELO, publicados no período de 2009 a 2019. Resultados: Uma análise de artigos seleciona diferentes microbiotas nos testes do tubo digestivo, da cavidade oral ao reto, que podem ser fatores etiológicos, profiláticos e terapêuticos. Conclusão: A evidência de microbiota específica para o segmento digestivo guarda uma relação com a dieta do indivíduo, que passa a ser referencial para a recuperação do estado da homeostase orgânica.

 

 


Keywords


Sistema digestivo, Microbioma, Doenças, Revisão.

References


Grice EA, Segre JA. The Human Microbiome: Our second genome. Annu Rev Genomics Hum Genet, 2012; 13:151-170. doi:10.1146/annurev-genom-090711-163814.

O'Hara AM, Shanahan F. The gut flora as a forgotten organ. EMBO Rep. 2006 Jul; 7(7): 688-693. doi: 10.1038/sj.embor.7400731.

Sekirov I, Russell SL, Antunes LCM, Finlay BB. Gut microbiota in health and disease. Physiol Rev, 2010; 90:859–904. doi: 10.1152/physrev.00045.2009.

Sommer F, Bäckhed. The gut microbiota – masters of the host development and physiology. Nature Rev Microbiol, 2013; 11(4):227-228. doi: 10.1038/nrmicro2974.

Mills S, Stanton C, Lane JA, Smith GJ, Ross RP. Precision Nutrition and the Microbiome, Part I: Current State of the Science. Nutrients, 2019; 11(4):923. doi: 10.3390/nu11040923.

Ling Z, Li Z, Liu X, Cheng Y, Luo Y, Tong X et al. Altered fecal microbiota composition associated with food allergy in infants. Appl Environ Microbiol, 80(8):2546-2554 (2014). doi: 10.1128/AEM.00003-14.

Caesar R, Tremaroli V, Kovatcheva-Datchary P, Cani PD, Bäckhed F. Crosstalk between gut microbiota and dietary lipids aggravates WAT inflammation through TLR signaling. Cell Metab, 2015; 22(4):658-668. doi: 10.1016/j.cmet.2015.07.026.

Nardone G, Compare D. The human gastric microbiota: Is it time to rethink the pathogenesis of stomach diseases? United European Gastroenterol J, 2015; 3(3):255-260. doi: 10.1177/2050640614566846.

Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, E.R. Mardis VER, J.I. Gordon. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature, 2006; 444(7122):1027-1031. doi: 10.1038/nature05414.

Oriach CS, Robertson RC, Stanton C, Cryan JF, Dinan TG. Food for thought: the role of nutrition in the microbiota-gut-brain axis. Clin Nutr Exp, 2016; 6:25-38. doi: 10.1016/j.yclnex.2016.01.003.

Borre YE, O’Keeffe GW, Clarke G, Stanton C, Dinan TG, Cryan JF. Microbiota and neurodevelopmental windows: implications for brain disorders. Trends Mol Med, 2014; 20(9), 509–518. doi:10.1016/j.molmed.2014.05.002.

Milani C, Duranti S, Bottacini F, Casey E, Turroni F, Mahony J et al. The first microbial colonizers of the human gut: composition, activities, and health implications of the infant gut microbiota. Microbiol Mol Biol Rev, 2017; 81(4):e00036-17. doi: 10.1128/MMBR.00036-17.

Nasidze I, Li J, Quinque D, Tang K, Stoneking M. Global diversity in the human salivary microbiome. Genome Res, 2009; 19(4):636-643. doi: 10.1101/gr.084616.108.

Okereke IC, Miller AL, Hamilton CF, Booth AL, Reep GL, Andersen CL et al. Microbiota of the oropharynx and endoscope compared to the esophagus. Sci Rep, 2019; 9:10201. doi: 10.1038/s41598-019-46747-y

.

Wang B, Yao M, Lv L, Ling Z, Li L. The human microbiota in health and disease. Engineering, 2017; 3(1):71–82. doi: 10.1016/J.ENG.2017.01.008.

Kummen M, Holm K, Anmarkrud JA, Nygård S, Vesterhus M, Høivik ML et al. The gut microbial profile in patients with primary sclerosing cholangitis is distinct from patients with ulcerative colitis without biliary disease and healthy controls. Gut, 2016; 66(4):611-619. doi: 10.1136/gutjnl-2015-310500.

Kleerebezem M. Microbial metabolic gatekeeping in the jejunum. Nat Rev Microbiol, 2018; 3:650–651. doi: 10.1038/s41564-01.

Schippa S, Conte MP. Dysbiotic events in gut microbiota: Impact on human health. Nutrients, 2014; 6(12):5786–5805. doi: 10.3390/nu6125786.

Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med, 2009; 6(7):e1000097, 2009. doi: 10.1371/journal.pmed.1000097.

Hopia H, Latvala E, Liimatainen L. Reviewing the methodology of an integrative review. Scand J Caring Sci, 2016; 30(4):662–669. doi: 10.1111/scs.12327.

Bauer PV, Duca FA, Zaved Waise TM, Dranse HJ, Rasmussen BA, Puri A et al. Lactobacillus gasseri in the upper small intestine impacts an ACSL3-dependent fatty acid-sensing. Pathway regulating whole-body glucose homeostasis. Cell Metabolism, 2018; 27:572–587. doi: 10.1016/j.cmet.2018.01.013

De Filippo C, Cavalieri D, Di Paola M, Ramazzotti M, Poullet JB, Massart S et al. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci USA, 2010; 107:14691-14696. doi: 10.1073/pnas.1005963107.

Marlow G, Ellett S, Ferguson IR, Zhu S, Karunasinghe N, Jesuthasan AC et al. Transcriptomics to study the effect of a Mediterranean-inspired diet on inflammation in Crohn's disease patients. Hum Genomics, 2013; 7:24. doi: 10.1186/1479-7364-7-24.

Ferrocino I, Di Cagno R, De Angelis M, Turroni S, Vannini L, Bancalari E et al. Fecal microbiota in healthy subjects following omnivore, vegetarian and vegan diets: culturable populations and rRNA DGGE profiling. PLoS One, 2015; 10 (e0128669). doi: 10.1371/journal.pone.0128669.

Matijašić BB, Obermajer T, Lipoglavšek L, Grabnar I, Avguštin G, Rogelj I. Association of dietary type with fecal microbiota in vegetarians and omnivores in Slovenia. Eur J Nutr, 2014; 53:1051-1064. doi: 10.1007/s00394-013-0607-6.

David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature, 2014; 505(7484):559–563. doi: 10.1038/nature12820.

Murphy EA, Velazquez KT, Herbert KM. Influence of high-fat diet on gut microbiota: a driving force for chronic disease risk. Curr Opin Clin Nutr Metab Care, 2015; 18:515-520. doi: 10.1097/MCO.0000000000000209.

Wu GD, Chen J, Hoffmann C, Bittinger K, Chen Y-Y, Keilbaugh SA et al. Linking long-term dietary patterns with gut microbial enterotypes. Science, 2011; 334:105-108. doi: 10.1126/science.1208344.

Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M et al. Diversity of the human intestinal microbial flora. Science, 2005; 308(5728):1635-1638. doi 10.1126/science.1110591.

Frank DN, St Amand AL, Feldman RA, Boedeker EC, Harpaz N, Pace NR. Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc Natl Acad Sci USA, 2007; 104(34):13780-13785. doi: 10.1073/pnas.0706625104.

Tan H, O'Toole PW. Impact of diet on the human intestinal microbiota. Curr Opin Food Sci, 2015; 2: 71-77. doi: 10.1016/j.cofs.2015.01.005.

Swidsinski A, Loening-Baucke V, Lochs H, Hale LP. Spatial organization of bacterial flora in normal and inflamed intestine: a fluorescence in situ hybridization study in mice. World J Gastroenterol, 2005; 11(8):1131-1140. doi: 10.3748/wjg.v11.i8.1131.

Nyangale EP, Mottram DS, Gibson GR. Gut microbial activity, implications for health and disease: the potential role of metabolite analysis. J Proteome Res, 2012; 11(12): 5573-5585. doi: 10.1021/pr300637d.

Burokas A, Moloney RD, Dinan TG, Cryan JF. Chapter one-microbiota regulation of the mammalian gut–brain axis. Adv Appl Microbiol, 2015; 91:1-62. doi: 10.1016/bs.aambs.2015.02.001.

Brestoff JR, Artis D. Commensal bacteria at the interface of host metabolism and the immune system. Nat Immunol, 2013; 14:676–684. doi:10.1038/ni.2640.

Bischoff SC, Barbara G, Buurman W, Ockhuizen T, Schulzke J-D, Serino M et al. Intestinal permeability - a new target for disease prevention and therapy. BMC

Gastroenterol, 2014; 14:189. 10.1136/gut.2008.165886. doi: 10.1186/s12876-014-0189-7

Barrett E, Ross R, O'Toole P, Fitzgerald G, Stanton C. γ-Aminobutyric acid production by culturable bacteria from the human intestine. J Appl Microbiol, 2014; 116(5):1384-1386. doi: 10.1111/j.1365-2672.2012.05344.x.

Surana NK, Kasper DL. The yin yang of bacterial polysaccharides: Lessons learned from B. fragilis PSA. Immunol Rev, 2012; 245(1):13-26. doi: 10.1111/j.1600-065X.2011.01075.x.

Byrne C, Chambers E, Morrison D, Frost G. The role of short chain fatty acids in appetite regulation and energy homeostasis. Int J Obes (Lond), 2015, 39(9):1331-1338. doi: 10.1038/ijo.2015.84.

.Everard A, Lazarevic V, Gaïa N, Johansson M, Ståhlman M, Backhed F et al. Microbiome of prebiotic-treated mice reveals novel targets involved in host response during obesity. ISME J, 2014;8: 2116-2130. doi: 10.1038/ismej.2014.45.




DOI: https://doi.org/10.34119/bjhrv3n2-61

Refbacks

  • There are currently no refbacks.